Electrical properties of garnet-like lithium ionic conductors Li5+xSrxLa3--xBi2O12 fabricated by spark plasma sintering method

Yun-Xia GAO, Xian-Ping WANG, Qin-Xing SUN, Zhong ZHUANG, Qian-Feng FANG()

PDF(435 KB)
PDF(435 KB)
Front. Mater. Sci. ›› 2012, Vol. 6 ›› Issue (3) : 216-224. DOI: 10.1007/s11706-012-0172-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Electrical properties of garnet-like lithium ionic conductors Li5+xSrxLa3--xBi2O12 fabricated by spark plasma sintering method

  • Yun-Xia GAO, Xian-Ping WANG, Qin-Xing SUN, Zhong ZHUANG, Qian-Feng FANG()
Author information +
History +

Abstract

A typical approach involving Pechini method and spark plasma sintering (SPS) method was presented for the preparation of high density Li5+xSrxLa3--xBi2O12 (x = 0, 1) ceramics. Phase formation, microstructure, grain size and electrical properties of the specimens were examined using XRD, SEM and alternating current impedance spectroscopy (ACIS). Dense Li5La3Bi2O12 and Li6SrLa2Bi2O12 ceramics with pure garnet-like phase, relative density of 97% and average grain size of about 5 μm were fabricated using this approach. The total conductivities at 298 K of Li5La3Bi2O12 and Li6SrLa2Bi2O12 ceramics prepared by the SPS method are 5.1×10-5 and 6.8×10-5 S/cm, respectively, 2 times higher than that of samples prepared by the conventional sintering method.

Keywords

lithium ionic conductor / Li5+xSrxLa3--xBi2O12 / Pechini method / spark plasma sintering (SPS) / ionic conductivity

Cite this article

Download citation ▾
Yun-Xia GAO, Xian-Ping WANG, Qin-Xing SUN, Zhong ZHUANG, Qian-Feng FANG. Electrical properties of garnet-like lithium ionic conductors Li5+xSrxLa3--xBi2O12 fabricated by spark plasma sintering method. Front Mater Sci, 2012, 6(3): 216‒224 https://doi.org/10.1007/s11706-012-0172-6

References

[1] Robertson A D, West A R, Ritchie A G. Review of crystalline lithium-ion conductors suitable for high temperature battery applications. Solid State Ionics , 1997, 104(1-2): 1-11
[2] Julien C, Nazri G A. Solid State Batteries: Materials Design and Optimization. Boston: Kluwer Academic Publications, 1994
[3] Takahashi T, ed. High Conductivity Solid Ionic Conductors: Recent Trends and Applications. Singapore: World Scientific , 1989, 201
[4] Alpen U V, Rabenau A, Talat G H. Ionic conductivity in Li3N single crystals. Applied Physics Letters , 1977, 30(12): 621-623
[5] Bohnke O, Bohnke C, Fourquet J L. Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ionics , 1996, 91(1-2): 21-31
[6] Thangadurai V, Weppner W. Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics , 2006, 12(1): 81-92
[7] Aono H, Imanaka H, Adachi G Y. High Li+ conducting ceramics. Accounts of Chemical Research , 1994, 27(9): 265-270
[8] Adachi G Y, Imanaka N, Aono H. Fast Li+ conducting ceramic electrolytes. Advanced Materials , 1996, 8(2): 127-135
[9] Mizuno F, Hayashi A, Tadanaga K, . High lithium ion conducting glass-ceramics in the system Li2S–P2S5. Solid State Ionics , 2006, 177(26-32): 2721-2725
[10] Bates J B, Dudney N J, Neudecker B, . Thin-film lithium and lithium-ion batteries. Solid State Ionics , 2000, 135(1-4): 33-45
[11] Thangadurai V, Kaack H, Weppner W. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M= Nb, Ta). Journal of the American Ceramic Society , 2003, 86(3): 437-440
[12] Thangadurai V, Weppner W. Li6ALa2Ta2O12 (A= Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction. Advanced Functional Materials , 2005, 15(1): 107-112
[13] Thangadurai V, Adams S, Weppner W. Crystal structure revision and identification of Li+ ion migration pathways in the garnet-like Li5La3M2O12 (M= Nb, Ta) oxides. Chemistry of Materials , 2004, 16(16): 2998-3006
[14] Thangadurai V, Weppner W. Li6ALa2Nb2O12 (A= Ca, Sr, Ba): A new class of fast lithium ion conductors with garnet-like structure. Journal of the American Ceramic Society , 2005, 88(2): 411-418
[15] Thangadurai V, Weppner W. Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12. Journal of Solid State Chemistry , 2006, 179(4): 974-984
[16] Murugan R, Weppner W, Schmid-Beurmann P, . Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12. Materials Science and Engineering B , 2007, 143(1-3): 14-20
[17] Thangadurai V, Weppner W. Investigations on electrical conductivity and chemical compatibility between fast lithium ion conducting garnet-like Li6BaLa2Ta2O12 and lithium battery cathodes. Journal of Power Sources , 2005, 142(1-2): 339-344
[18] Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition , 2007, 46(41): 7778-7781
[19] Ohta S, Kobayashi T, Asaoka T. High lithium ionic conductivity in the garnet-type oxide Li7-XLa3(Zr2-X, NbX)O12 (X = 0-2). Journal of Power Sources , 2011, 196(6): 3342-3345
[20] Bohnke Cl, Regrag B, Le Berre F, . Comparison of pH sensitivity of lithium lanthanum titanate obtained by sol–gel synthesis and solid state chemistry. Solid State Ionics , 2005, 176(1-2): 73-80
[21] Vijayakumar M, Pham Q N, Bohnke C. Lithium lanthanum titanate ceramic as sensitive material for pH sensor: Influence of synthesis methods and powder grains size. Journal of the European Ceramic Society , 2005, 25(12): 2973-2976
[22] Vijayakumar M, Inaguma Y, Mashiko W, . Synthesis of fine powders of Li3xLa2/3-xTiO3 perovskite by a polymerizable precursor method. Chemistry of Materials , 2004, 16(14): 2719-2724
[23] Gao Y X, Wang X P, Wang W G, . Synthesis, ionic conductivity, and chemical compatibility of garnet-like lithium ionic conductors Li5La3Bi2O12. Solid State Ionics , 2010, 181(31-32): 1415-1419
[24] Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. Journal of Materials Science , 2006, 41(3): 763-777
[25] Anselmi-Tamburini U, Garay J E, Munir Z A, . Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies. Journal of Materials Research , 2004, 19(11): 3255-3262
[26] Harimkar S P, Borkar T, Singh A. Spark plasma sintering of amorphous-crystalline laminated composites. Materials Science and Engineering A , 2011, 528(3): 1901-1905
[27] Wen Z Y, Xu X X, Li J X. Preparation, microstructure and electrical properties of Li1.4Al0.4Ti1.6(PO4)3 nanoceramics. Journal of Electroceramics , 2009, 22(1-3): 342-345
[28] Xu X X, Wen Z Y, Yang X L, . Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique. Materials Research Bulletin , 2008, 43(8-9): 2334-2341
[29] Kobayashi Y, Takeuchi T, Tabuchi M, . Densification of LiTi2(PO4)3-based solid electrolytes by spark-plasma-sintering. Journal of Power Sources , 1999, 81-82: 853-858
[30] Chang C M, Hong S H, Park H M. Spark plasma sintering of Al substituted LiHf2(PO4)3 solid electrolytes. Solid State Ionics , 2005, 176(35-36): 2583-2587
[31] Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter , 1993, 192(1-2): 55-69
[32] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography , 1976, 32(5): 751-767
[33] Murugan R, Weppner W, Schmid-Beurmann P, . Structure and lithium ion conductivity of garnet-like Li5La3Sb2O12 and Li6SrLa2Sb2O12. Materials Research Bulletin , 2008, 43(10): 2579-2591
[34] Wang X P, Corbel G, Kodjikian S, . Isothermal kinetic of phase transformation and mixed electrical conductivity in Bi3NbO7. Journal of Solid State Chemistry , 2006, 179(11): 3338-3346
[35] Murugan R, Thangadurai V, Weppner W. Effect of lithium ion content on the lithium ion conductivity of the garnet-like structure Li5+xBaLa2Ta2O11.5+0.5x (x = 0-2). Applied Physics A: Materials Science & Processing , 2008, 91(4): 615-620
AI Summary AI Mindmap
PDF(435 KB)

Accesses

Citations

Detail

Sections
Recommended

/