[1] Hickmott T W. Low-frequency negative resistance in thin anodic oxide films.
Journal of Applied Physics , 1962, 33(9): 2669-2682
[2] Sutherland R R. A theory for negative resistance and memory effects in thin insulating films and its application to Au–ZnS–Au devices.
Journal of Physics D: Applied Physics , 1971, 4(3): 468-479
[3] Hickmott T W. Potential distribution and negative resistance in thin oxide films.
Journal of Applied Physics , 1964, 35(9): 2679-2689
[4] Liu S Q, Wu N J, Ignatiev A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films.
Applied Physics Letters , 2000, 76(19): 2749-2751
[5] Lai Y-S, Tu C-H, Kwong D-L,
. Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications.
Applied Physics Letters , 2005, 87(12): 122101 (3 pages)
[6] Hu B, Zhuge F, Zhu X,
. Nonvolatile bistable resistive switching in a new polyimide bearing 9-phenyl-9
H-carbazole pendant.
Journal of Materials Chemistry , 2012, 22(2): 520-526
[7] Jo S H, Kim K H, Lu W. High-density crossbar arrays based on a Si memristive system.
Nano Letters , 2009, 9(2): 870-874
[8] Jo S H, Kim K H, Lu W. Programmable resistance switching in nanoscale two-terminal devices.
Nano Letters , 2009, 9(1): 496-500
[9] Zhuge F, Dai W, He C L,
. Nonvolatile resistive switching memory based on amorphous carbon.
Applied Physics Letters , 2010, 96(16): 163505 (3 pages)
[10] He C L, Zhuge F, Zhou X F,
. Nonvolatile resistive switching in graphene oxide thin films.
Applied Physics Letters , 2009, 95(23): 232101 (3 pages)
[11] Jeong H Y, Kim J Y, Kim J W,
. Graphene oxide thin films for flexible nonvolatile memory applications.
Nano Letters , 2010, 10(11): 4381-4386
[12] Lee M J, Han S, Jeon S H,
. Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory.
Nano Letters , 2009, 9(4): 1476-1481
[13] Oka K, Yanagida T, Nagashima K,
. Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires.
Journal of the American Chemical Society , 2009, 131(10): 3434-3435
[14] Yun J-B, Kim S, Seo S,
. Random and localized resistive switching observation in Pt/NiO/Pt.
physica status solidi (RRL) – Rapid Research Letters , 2007, 1(6): 280-282
[15] Guan W, Long S, Liu Q,
. Nonpolar nonvolatile resistive switching in Cu doped ZrO
2.
Electron Device Letters, IEEE , 2008, 29(5): 434-437
[16] Li Y, Long S, Lv H,
. Improvement of resistive switching characteristics in ZrO
2 film by embedding a thin TiO
x layer.
Nanotechnology , 2011, 22(25): 254028
[17] Wang Y, Liu Q, Long S,
. Investigation of resistive switching in Cu-doped HfO
2 thin film for multilevel non-volatile memory applications.
Nanotechnology , 2010, 21(4): 045202
[18] Chan M Y, Zhang T, Ho V,
. Resistive switching effects of HfO
2 high-
k dielectric.
Microelectronic Engineering , 2008, 85(12): 2420-2424
[19] Lin K-L, Hou T-H, Shieh J,
. Electrode dependence of filament formation in HfO
2 resistive-switching memory.
Journal of Applied Physics , 2011, 109(8): 084104 (7 pages)
[20] Li S-L, Gang J-L, Li J,
. Reproducible low-voltage resistive switching in a low-initial-resistance Pr
0.7Ca
0.3MnO
3 junction.
Journal of Physics D: Applied Physics , 2008, 41(18): 185409
[21] Gang J-L, Li S-L, Liao Z-L,
. Clockwise vs counter-clockwise
I–
V hysteresis of point-contact metal-tip/Pr
0.7Ca
0.3MnO
3/Pt devices.
Chinese Physics Letters , 2010, 27(2): 027301
[22] Yin K, Li M, Liu Y,
. Resistance switching in polycrystalline BiFeO
3 thin films.
Applied Physics Letters , 2010, 97(4): 042101 (3 pages)
[23] Yang C H, Seidel J, Kim S Y,
. Electric modulation of conduction in multiferroic Ca-doped BiFeO
3 films.
Nature Materials , 2009, 8(6): 485-493
[24] Chen X, Wu G, Zhang H,
. Nonvolatile bipolar resistance switching effects in multiferroic BiFeO
3 thin films on LaNiO
3-electrodized Si substrates.
Applied Physics A: Materials Science & Processing , 2010, 100(4): 987-990
[25] Szot K, Speier W, Bihlmayer G,
. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO
3.
Nature Materials , 2006, 5(4): 312-320
[26] Ni M C, Guo S M, Tian H F,
. Resistive switching effect in SrTiO
3-δ/Nb-doped SrTiO
3 heterojunction.
Applied Physics Letters , 2007, 91(18): 183502 (3 pages)
[27] Muenstermann R, Menke T, Dittmann R,
. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO
3 thin-film memristive devices.
Advanced Materials , 2010, 22(43): 4819-4822
[28] Garcia V, Fusil S, Bouzehouane K,
. Giant tunnel electroresistance for non-destructive readout of ferroelectric states.
Nature , 2009, 460(7251): 81-84
[29] Jeong W C, Lee B I, Joo S K. Three level, six state multilevel magnetoresistive RAM(MRAM).
Journal of Applied Physics , 1999, 85(8): 4782-4784
[30] Wuttig M. Phase-change materials: towards a universal memory?
Nature Materials , 2005, 4(4): 265-266
[31] Waser R, Dittmann R, Staikov G,
. Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges.
Advanced Materials , 2009, 21(25-26): 2632-2663
[32] Kwon D H, Kim K M, Jang J H,
. Atomic structure of conducting nanofilaments in TiO
2 resistive switching memory.
Nature Nanotechnology , 2010, 5(2): 148-153
[33] Sawa A, Fujii T, Kawasaki M,
. Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr
0.7Ca
0.3MnO
3 interface.
Applied Physics Letters , 2004, 85(18): 4073-4075
[34] Dong C Y, Shang D S, Shi L,
. Roles of silver oxide in the bipolar resistance switching devices with silver electrode.
Applied Physics Letters , 2011, 98(7): 072107 (3 pages)
[35] Meijer G I, Staub U, Janousch M,
. Valence states of Cr and the insulator-to-metal transition in Cr-doped SrTiO
3.
Physical Review B: Condensed Matter and Materials Physics , 2005, 72(15): 155102
[36] Maksymovych P, Jesse S, Yu P,
. Polarization control of electron tunneling into ferroelectric surfaces.
Science , 2009, 324(5933): 1421-1425
[37] Kim S, Jeong H Y, Choi S Y,
. Comprehensive modeling of resistive switching in the Al/TiO
x/TiO
2/Al heterostructure based on space-charge-limited conduction.
Applied Physics Letters , 2010, 97(3): 033508 (3 pages)
[38] Lee M J, Lee C B, Lee D,
. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta
2O
5-x/TaO
2-x bilayer structures.
Nature Materials , 2011, 10(8): 625-630
[39] Schindler C, Meier M, Waser R,
. Resistive switching in Ag–Ge–Se with extremely low write currents. In:
Non-Volatile Memory Technology Symposium, 2007. NVMTS '07 , 2007, 82-85
[40] Guan W, Liu M, Long S,
. On the resistive switching mechanisms of Cu/ZrO
2:Cu/Pt.
Applied Physics Letters , 2008, 93(22): 223506 (3 pages)
[41] Kim K M, Jeong D S, Hwang C S. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook.
Nanotechnology , 2011, 22(25): 254002
[42] Chang S H, Chae S C, Lee S B,
. Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors.
Applied Physics Letters , 2008, 92(18): 183507 (3 pages)
[43] Larentis S, Cagli C, Nardi F,
. Filament diffusion model for simulating reset and retention processes in RRAM.
Microelectronic Engineering , 2011, 88(7): 1119-1123
[44] Waser R, Aono M. Nanoionics-based resistive switching memories.
Nature Materials , 2007, 6(11): 833-840
[45] Zhu X, Zhuge F, Li M,
. Microstructure dependence of leakage and resistive switching behaviours in Ce-doped BiFeO
3 thin films.
Journal of Physics D: Applied Physics , 2011, 44(41): 415104
[46] Zuo Q, Long S, Liu Q,
. Self-rectifying effect in gold nanocrystal-embedded zirconium oxide resistive memory.
Journal of Applied Physics , 2009, 106(7): 073724 (5 pages)
[47] Sim H, Seong D-J, Chang M,
. Excellent resistance switching characteristics of Pt/single-crystal Nb-doped SrTiO3 Schottky junction. In:
21st Non-Volatile Semiconductor Memory Workshop, 2006. IEEE NVSMW 2006, 88-89
[48] Li M, Zhuge F, Zhu X,
. Nonvolatile resistive switching in metal/La-doped BiFeO
3/Pt sandwiches.
Nanotechnology , 2010, 21(42): 425202
[49] Zhuge F, Hu B, He C,
. Mechanism of nonvolatile resistive switching in graphene oxide thin films.
Carbon , 2011, 49(12): 3796-3802
[50] Bid A, Bora A, Raychaudhuri A K. Temperature dependence of the resistance of metallic nanowires (diameter≥15 nm): Applicability of Bloch-Grüneisen theorem.
Physical Review B: Condensed Matter and Materials Physics , 2006, 74(3): 035426 (9 pages)
[51] Guo Y, Zhang Y F, Bao X Y,
. Superconductivity modulated by quantum size effects.
Science , 2004, 306(5703): 1915-1917
[52] Koch C C, Scarbrough J O, Kroeger D M. Effects of interstitial oxygen on the superconductivity of niobium.
Physical Review B: Condensed Matter and Materials Physics , 1974, 9(3): 888-897
[53] Son J Y, Shin Y H. Direct observation of conducting filaments on resistive switching of NiO thin films.
Applied Physics Letters , 2008, 92(22): 222106 (3 pages)
[54] Chae S C, Lee J S, Kim S,
. Random circuit breaker network model for unipolar resistance switching.
Advanced Materials , 2008, 20(6): 1154-1159
[55] Zhuge F, Peng S, He C,
. Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments.
Nanotechnology , 2011, 22(27): 275204
[56] Lee M H, Hwang C S. Resistive switching memory: observations with scanning probe microscopy.
Nanoscale , 2011, 3(2): 490-502
[57] Choi S J, Park G S, Kim K H,
. In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory.
Advanced Materials , 2011, 23(29): 3272-3277
[58] Cho B, Yun J M, Song S,
. Direct observation of Ag filamentary paths in organic resistive memory devices.
Advanced Functional Materials , 2011, 21(20): 3976-3981
[59] Yang Y C, Pan F, Liu Q,
. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application.
Nano Letters , 2009, 9(4): 1636-1643
[60] Yao J, Sun Z, Zhong L,
. Resistive switches and memories from silicon oxide.
Nano Letters , 2010, 10(10): 4105-4110
[61] Sakamoto T, Lister K, Banno N,
. Electronic transport in Ta
2O
5 resistive switch.
Applied Physics Letters , 2007, 91(9): 092110 (3 pages)
[62] Park G S, Li X S, Kim D C,
. Observation of electric-field induced Ni filament channels in polycrystalline NiO
x film.
Applied Physics Letters , 2007, 91(22): 222103 (3 pages)
[63] Tsuruoka T, Terabe K, Hasegawa T,
. Forming and switching mechanisms of a cation-migration-based oxide resistive memory.
Nanotechnology , 2010, 21(42): 425205
[64] Terabe K, Hasegawa T, Nakayama T,
. Quantized conductance atomic switch.
Nature , 2005, 433(7021): 47-50
[65] Guo X, Schindler C, Menzel S,
. Understanding the switching-off mechanism in Ag
+ migration based resistively switching model systems.
Applied Physics Letters , 2007, 91(13): 133513 (3 pages)
[66] Liu Q, Sun J, Lv H,
. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM.
Advanced Materials , 2012, 24(14): 1844-1849
[67] Yang Y, Gao P, Gaba S,
. Observation of conducting filament growth in nanoscale resistive memories.
Nature Communications , 2012, 3: 732
[68] Peng S, Zhuge F, Chen X,
. Mechanism for resistive switching in an oxide-based electrochemical metallization memory.
Applied Physics Letters , 2012, 100(7): 072101 (4 pages)
[69] Liu Q, Long S, Lv H,
. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode.
ACS Nano , 2010, 4(10): 6162-6168
[70] Lee W, Jung H J, Lee M H,
. Oxygen surface exchange at grain boundaries of oxide ion conductors.
Advanced Functional Materials , 2012, 22(5): 965-971
[71] Park C, Jeon S H, Chae S C,
. Role of structural defects in the unipolar resistive switching characteristics of Pt/NiO/Pt structures.
Applied Physics Letters , 2008, 93(4): 042102 (3 pages)
[72] Zou C, Chen B, Zhu X-J,
. Local leakage current behaviours of BiFeO
3 films.
Chinese Physics B , 2011, 20(11): 117701
[73] Park J-W, Park J-W, Jung K,
. Influence of oxygen content on electrical properties of NiO films grown by rf reactive sputtering for resistive random-access memory applications.
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures , 2006, 24(5): 2205-2208
[74] Bae Y C, Lee A R, Kwak J S,
. Dependence of resistive switching behaviors on oxygen content of the Pt/TiO
2-x/Pt matrix.
Current Applied Physics , 2011, 11(2): e66-e69
[75] Zhang H, Liu L, Gao B,
. Gd-doping effect on performance of HfO
2 based resistive switching memory devices using implantation approach.
Applied Physics Letters , 2011, 98(4): 042105 (3 pages)
[76] Liu Q, Long S, Wang W,
. Improvement of resistive switching properties in ZrO
2-based ReRAM with implanted Ti ions.
Electron Device Letters, IEEE , 2009, 30(12): 1335-1337
[77] Fang Z, Yu H Y, Liu W J,
. Temperature instability of resistive switching on HfO
x-based RRAM devices.
Electron Device Letters, IEEE , 2010, 31(5): 476-478
[78] Goux L, Czarnecki P, Chen Y Y,
. Evidences of oxygen-mediated resistive-switching mechanism in TiN\HfO
2\Pt cells.
Applied Physics Letters , 2010, 97(24): 243509 (3 pages)
[79] Tsuruoka T, Terabe K, Hasegawa T,
. Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches.
Advanced Functional Materials , 2012, 22(1): 70-77
[80] Zhu X, Su W, Liu Y,
. Observation of conductance quantization in oxide-based resistive switching memory.
Advanced Materials , 2012,
10.1002/adma.201201506[81] Ohnishi H, Kondo Y, Takayanagi K. Quantized conductance through individual rows of suspended gold atoms.
Nature , 1998, 395(6704): 780-783
[82] Seo J W, Park J W, Lim K S,
. Transparent resistive random access memory and its characteristics for nonvolatile resistive switching.
Applied Physics Letters , 2008, 93(22): 223505 (3 pages)
[83] Li C Z, He H X, Bogozi A,
. Molecular detection based on conductance quantization of nanowires.
Applied Physics Letters , 2000, 76(10): 1333-1335
[84] Shu C, Li C Z, He H X,
. Fractional conductance quantization in metallic nanoconstrictions under electrochemical potential control.
Physical Review Letters , 2000, 84(22): 5196-5199
[85] Linn E, Rosezin R, Kügeler C,
. Complementary resistive switches for passive nanocrossbar memories.
Nature Materials , 2010, 9(5): 403-406