Resistive switching effects in oxide sandwiched structures

Xiao-Jian ZHU1,2, Jie SHANG1,2, Run-Wei LI1,2()

PDF(1986 KB)
PDF(1986 KB)
Front. Mater. Sci. ›› 2012, Vol. 6 ›› Issue (3) : 183-206. DOI: 10.1007/s11706-012-0170-8
REVIEW ARTICLE

Resistive switching effects in oxide sandwiched structures

  • Xiao-Jian ZHU1,2, Jie SHANG1,2, Run-Wei LI1,2()
Author information +
History +

Abstract

Resistive switching (RS) behaviors have attracted great interest due to their promising potential for the data storage. Among various materials, oxide-based devices appear to be more advantageous considering their handy fabrication and compatibility with CMOS technology, though the underlying mechanism is still controversial due to the diversity of RS behaviors. In this review, we focus on the oxide-based RS memories, in which the working mechanism can be understood basically according to a so-called filament model. The filaments formation/rupture processes, approaches developed to detect and characterize filaments, several effective attempts to improve the performances of RS and the quantum conductance behaviors in oxide-based resistive random access memory (RRAM) devices are addressed, respectively.

Keywords

resistive random access memory (RRAM) / resistive switching (RS) / oxide film / filaments / quantum conductance

Cite this article

Download citation ▾
Xiao-Jian ZHU, Jie SHANG, Run-Wei LI. Resistive switching effects in oxide sandwiched structures. Front Mater Sci, 2012, 6(3): 183‒206 https://doi.org/10.1007/s11706-012-0170-8

References

[1] Hickmott T W. Low-frequency negative resistance in thin anodic oxide films. Journal of Applied Physics , 1962, 33(9): 2669-2682
[2] Sutherland R R. A theory for negative resistance and memory effects in thin insulating films and its application to Au–ZnS–Au devices. Journal of Physics D: Applied Physics , 1971, 4(3): 468-479
[3] Hickmott T W. Potential distribution and negative resistance in thin oxide films. Journal of Applied Physics , 1964, 35(9): 2679-2689
[4] Liu S Q, Wu N J, Ignatiev A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Applied Physics Letters , 2000, 76(19): 2749-2751
[5] Lai Y-S, Tu C-H, Kwong D-L, . Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications. Applied Physics Letters , 2005, 87(12): 122101 (3 pages)
[6] Hu B, Zhuge F, Zhu X, . Nonvolatile bistable resistive switching in a new polyimide bearing 9-phenyl-9H-carbazole pendant. Journal of Materials Chemistry , 2012, 22(2): 520-526
[7] Jo S H, Kim K H, Lu W. High-density crossbar arrays based on a Si memristive system. Nano Letters , 2009, 9(2): 870-874
[8] Jo S H, Kim K H, Lu W. Programmable resistance switching in nanoscale two-terminal devices. Nano Letters , 2009, 9(1): 496-500
[9] Zhuge F, Dai W, He C L, . Nonvolatile resistive switching memory based on amorphous carbon. Applied Physics Letters , 2010, 96(16): 163505 (3 pages)
[10] He C L, Zhuge F, Zhou X F, . Nonvolatile resistive switching in graphene oxide thin films. Applied Physics Letters , 2009, 95(23): 232101 (3 pages)
[11] Jeong H Y, Kim J Y, Kim J W, . Graphene oxide thin films for flexible nonvolatile memory applications. Nano Letters , 2010, 10(11): 4381-4386
[12] Lee M J, Han S, Jeon S H, . Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Letters , 2009, 9(4): 1476-1481
[13] Oka K, Yanagida T, Nagashima K, . Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires. Journal of the American Chemical Society , 2009, 131(10): 3434-3435
[14] Yun J-B, Kim S, Seo S, . Random and localized resistive switching observation in Pt/NiO/Pt. physica status solidi (RRL) – Rapid Research Letters , 2007, 1(6): 280-282
[15] Guan W, Long S, Liu Q, . Nonpolar nonvolatile resistive switching in Cu doped ZrO2. Electron Device Letters, IEEE , 2008, 29(5): 434-437
[16] Li Y, Long S, Lv H, . Improvement of resistive switching characteristics in ZrO2 film by embedding a thin TiOx layer. Nanotechnology , 2011, 22(25): 254028
[17] Wang Y, Liu Q, Long S, . Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology , 2010, 21(4): 045202
[18] Chan M Y, Zhang T, Ho V, . Resistive switching effects of HfO2 high-k dielectric. Microelectronic Engineering , 2008, 85(12): 2420-2424
[19] Lin K-L, Hou T-H, Shieh J, . Electrode dependence of filament formation in HfO2 resistive-switching memory. Journal of Applied Physics , 2011, 109(8): 084104 (7 pages)
[20] Li S-L, Gang J-L, Li J, . Reproducible low-voltage resistive switching in a low-initial-resistance Pr0.7Ca0.3MnO3 junction. Journal of Physics D: Applied Physics , 2008, 41(18): 185409
[21] Gang J-L, Li S-L, Liao Z-L, . Clockwise vs counter-clockwise IV hysteresis of point-contact metal-tip/Pr0.7Ca0.3MnO3/Pt devices. Chinese Physics Letters , 2010, 27(2): 027301
[22] Yin K, Li M, Liu Y, . Resistance switching in polycrystalline BiFeO3 thin films. Applied Physics Letters , 2010, 97(4): 042101 (3 pages)
[23] Yang C H, Seidel J, Kim S Y, . Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nature Materials , 2009, 8(6): 485-493
[24] Chen X, Wu G, Zhang H, . Nonvolatile bipolar resistance switching effects in multiferroic BiFeO3 thin films on LaNiO3-electrodized Si substrates. Applied Physics A: Materials Science & Processing , 2010, 100(4): 987-990
[25] Szot K, Speier W, Bihlmayer G, . Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nature Materials , 2006, 5(4): 312-320
[26] Ni M C, Guo S M, Tian H F, . Resistive switching effect in SrTiO3-δ/Nb-doped SrTiO3 heterojunction. Applied Physics Letters , 2007, 91(18): 183502 (3 pages)
[27] Muenstermann R, Menke T, Dittmann R, . Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials , 2010, 22(43): 4819-4822
[28] Garcia V, Fusil S, Bouzehouane K, . Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature , 2009, 460(7251): 81-84
[29] Jeong W C, Lee B I, Joo S K. Three level, six state multilevel magnetoresistive RAM(MRAM). Journal of Applied Physics , 1999, 85(8): 4782-4784
[30] Wuttig M. Phase-change materials: towards a universal memory? Nature Materials , 2005, 4(4): 265-266
[31] Waser R, Dittmann R, Staikov G, . Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Advanced Materials , 2009, 21(25-26): 2632-2663
[32] Kwon D H, Kim K M, Jang J H, . Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotechnology , 2010, 5(2): 148-153
[33] Sawa A, Fujii T, Kawasaki M, . Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Applied Physics Letters , 2004, 85(18): 4073-4075
[34] Dong C Y, Shang D S, Shi L, . Roles of silver oxide in the bipolar resistance switching devices with silver electrode. Applied Physics Letters , 2011, 98(7): 072107 (3 pages)
[35] Meijer G I, Staub U, Janousch M, . Valence states of Cr and the insulator-to-metal transition in Cr-doped SrTiO3. Physical Review B: Condensed Matter and Materials Physics , 2005, 72(15): 155102
[36] Maksymovych P, Jesse S, Yu P, . Polarization control of electron tunneling into ferroelectric surfaces. Science , 2009, 324(5933): 1421-1425
[37] Kim S, Jeong H Y, Choi S Y, . Comprehensive modeling of resistive switching in the Al/TiOx/TiO2/Al heterostructure based on space-charge-limited conduction. Applied Physics Letters , 2010, 97(3): 033508 (3 pages)
[38] Lee M J, Lee C B, Lee D, . A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nature Materials , 2011, 10(8): 625-630
[39] Schindler C, Meier M, Waser R, . Resistive switching in Ag–Ge–Se with extremely low write currents. In: Non-Volatile Memory Technology Symposium, 2007. NVMTS '07 , 2007, 82-85
[40] Guan W, Liu M, Long S, . On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Applied Physics Letters , 2008, 93(22): 223506 (3 pages)
[41] Kim K M, Jeong D S, Hwang C S. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology , 2011, 22(25): 254002
[42] Chang S H, Chae S C, Lee S B, . Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors. Applied Physics Letters , 2008, 92(18): 183507 (3 pages)
[43] Larentis S, Cagli C, Nardi F, . Filament diffusion model for simulating reset and retention processes in RRAM. Microelectronic Engineering , 2011, 88(7): 1119-1123
[44] Waser R, Aono M. Nanoionics-based resistive switching memories. Nature Materials , 2007, 6(11): 833-840
[45] Zhu X, Zhuge F, Li M, . Microstructure dependence of leakage and resistive switching behaviours in Ce-doped BiFeO3 thin films. Journal of Physics D: Applied Physics , 2011, 44(41): 415104
[46] Zuo Q, Long S, Liu Q, . Self-rectifying effect in gold nanocrystal-embedded zirconium oxide resistive memory. Journal of Applied Physics , 2009, 106(7): 073724 (5 pages)
[47] Sim H, Seong D-J, Chang M, . Excellent resistance switching characteristics of Pt/single-crystal Nb-doped SrTiO3 Schottky junction. In: 21st Non-Volatile Semiconductor Memory Workshop, 2006. IEEE NVSMW 2006, 88-89
[48] Li M, Zhuge F, Zhu X, . Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches. Nanotechnology , 2010, 21(42): 425202
[49] Zhuge F, Hu B, He C, . Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon , 2011, 49(12): 3796-3802
[50] Bid A, Bora A, Raychaudhuri A K. Temperature dependence of the resistance of metallic nanowires (diameter≥15 nm): Applicability of Bloch-Grüneisen theorem. Physical Review B: Condensed Matter and Materials Physics , 2006, 74(3): 035426 (9 pages)
[51] Guo Y, Zhang Y F, Bao X Y, . Superconductivity modulated by quantum size effects. Science , 2004, 306(5703): 1915-1917
[52] Koch C C, Scarbrough J O, Kroeger D M. Effects of interstitial oxygen on the superconductivity of niobium. Physical Review B: Condensed Matter and Materials Physics , 1974, 9(3): 888-897
[53] Son J Y, Shin Y H. Direct observation of conducting filaments on resistive switching of NiO thin films. Applied Physics Letters , 2008, 92(22): 222106 (3 pages)
[54] Chae S C, Lee J S, Kim S, . Random circuit breaker network model for unipolar resistance switching. Advanced Materials , 2008, 20(6): 1154-1159
[55] Zhuge F, Peng S, He C, . Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments. Nanotechnology , 2011, 22(27): 275204
[56] Lee M H, Hwang C S. Resistive switching memory: observations with scanning probe microscopy. Nanoscale , 2011, 3(2): 490-502
[57] Choi S J, Park G S, Kim K H, . In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory. Advanced Materials , 2011, 23(29): 3272-3277
[58] Cho B, Yun J M, Song S, . Direct observation of Ag filamentary paths in organic resistive memory devices. Advanced Functional Materials , 2011, 21(20): 3976-3981
[59] Yang Y C, Pan F, Liu Q, . Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Letters , 2009, 9(4): 1636-1643
[60] Yao J, Sun Z, Zhong L, . Resistive switches and memories from silicon oxide. Nano Letters , 2010, 10(10): 4105-4110
[61] Sakamoto T, Lister K, Banno N, . Electronic transport in Ta2O5 resistive switch. Applied Physics Letters , 2007, 91(9): 092110 (3 pages)
[62] Park G S, Li X S, Kim D C, . Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Applied Physics Letters , 2007, 91(22): 222103 (3 pages)
[63] Tsuruoka T, Terabe K, Hasegawa T, . Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology , 2010, 21(42): 425205
[64] Terabe K, Hasegawa T, Nakayama T, . Quantized conductance atomic switch. Nature , 2005, 433(7021): 47-50
[65] Guo X, Schindler C, Menzel S, . Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Applied Physics Letters , 2007, 91(13): 133513 (3 pages)
[66] Liu Q, Sun J, Lv H, . Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Advanced Materials , 2012, 24(14): 1844-1849
[67] Yang Y, Gao P, Gaba S, . Observation of conducting filament growth in nanoscale resistive memories. Nature Communications , 2012, 3: 732
[68] Peng S, Zhuge F, Chen X, . Mechanism for resistive switching in an oxide-based electrochemical metallization memory. Applied Physics Letters , 2012, 100(7): 072101 (4 pages)
[69] Liu Q, Long S, Lv H, . Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano , 2010, 4(10): 6162-6168
[70] Lee W, Jung H J, Lee M H, . Oxygen surface exchange at grain boundaries of oxide ion conductors. Advanced Functional Materials , 2012, 22(5): 965-971
[71] Park C, Jeon S H, Chae S C, . Role of structural defects in the unipolar resistive switching characteristics of Pt/NiO/Pt structures. Applied Physics Letters , 2008, 93(4): 042102 (3 pages)
[72] Zou C, Chen B, Zhu X-J, . Local leakage current behaviours of BiFeO3 films. Chinese Physics B , 2011, 20(11): 117701
[73] Park J-W, Park J-W, Jung K, . Influence of oxygen content on electrical properties of NiO films grown by rf reactive sputtering for resistive random-access memory applications. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures , 2006, 24(5): 2205-2208
[74] Bae Y C, Lee A R, Kwak J S, . Dependence of resistive switching behaviors on oxygen content of the Pt/TiO2-x/Pt matrix. Current Applied Physics , 2011, 11(2): e66-e69
[75] Zhang H, Liu L, Gao B, . Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach. Applied Physics Letters , 2011, 98(4): 042105 (3 pages)
[76] Liu Q, Long S, Wang W, . Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions. Electron Device Letters, IEEE , 2009, 30(12): 1335-1337
[77] Fang Z, Yu H Y, Liu W J, . Temperature instability of resistive switching on HfOx-based RRAM devices. Electron Device Letters, IEEE , 2010, 31(5): 476-478
[78] Goux L, Czarnecki P, Chen Y Y, . Evidences of oxygen-mediated resistive-switching mechanism in TiN\HfO2\Pt cells. Applied Physics Letters , 2010, 97(24): 243509 (3 pages)
[79] Tsuruoka T, Terabe K, Hasegawa T, . Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Advanced Functional Materials , 2012, 22(1): 70-77
[80] Zhu X, Su W, Liu Y, . Observation of conductance quantization in oxide-based resistive switching memory. Advanced Materials , 2012, 10.1002/adma.201201506
[81] Ohnishi H, Kondo Y, Takayanagi K. Quantized conductance through individual rows of suspended gold atoms. Nature , 1998, 395(6704): 780-783
[82] Seo J W, Park J W, Lim K S, . Transparent resistive random access memory and its characteristics for nonvolatile resistive switching. Applied Physics Letters , 2008, 93(22): 223505 (3 pages)
[83] Li C Z, He H X, Bogozi A, . Molecular detection based on conductance quantization of nanowires. Applied Physics Letters , 2000, 76(10): 1333-1335
[84] Shu C, Li C Z, He H X, . Fractional conductance quantization in metallic nanoconstrictions under electrochemical potential control. Physical Review Letters , 2000, 84(22): 5196-5199
[85] Linn E, Rosezin R, Kügeler C, . Complementary resistive switches for passive nanocrossbar memories. Nature Materials , 2010, 9(5): 403-406
AI Summary AI Mindmap
PDF(1986 KB)

Accesses

Citations

Detail

Sections
Recommended

/