[1] Hickmott T W. Low-frequency negative resistance in thin anodic oxide films.
Journal of Applied Physics , 1962, 33(9): 2669-2682
[2] Sutherland R R. A theory for negative resistance and memory effects in thin insulating films and its application to Au–ZnS–Au devices.
Journal of Physics D: Applied Physics , 1971, 4(3): 468-479
[3] Hickmott T W. Potential distribution and negative resistance in thin oxide films.
Journal of Applied Physics , 1964, 35(9): 2679-2689
[4] Liu S Q, Wu N J, Ignatiev A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films.
Applied Physics Letters , 2000, 76(19): 2749-2751
[5] Lai Y-S, Tu C-H, Kwong D-L,
. Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications. Applied Physics Letters , 2005, 87(12): 122101 (3 pages)
[6] Hu B, Zhuge F, Zhu X, . Nonvolatile bistable resistive switching in a new polyimide bearing 9-phenyl-9H-carbazole pendant. Journal of Materials Chemistry , 2012, 22(2): 520-526
[7] Jo S H, Kim K H, Lu W. High-density crossbar arrays based on a Si memristive system. Nano Letters , 2009, 9(2): 870-874
[8] Jo S H, Kim K H, Lu W. Programmable resistance switching in nanoscale two-terminal devices. Nano Letters , 2009, 9(1): 496-500
[9] Zhuge F, Dai W, He C L, . Nonvolatile resistive switching memory based on amorphous carbon. Applied Physics Letters , 2010, 96(16): 163505 (3 pages)
[10] He C L, Zhuge F, Zhou X F, . Nonvolatile resistive switching in graphene oxide thin films. Applied Physics Letters , 2009, 95(23): 232101 (3 pages)
[11] Jeong H Y, Kim J Y, Kim J W, . Graphene oxide thin films for flexible nonvolatile memory applications. Nano Letters , 2010, 10(11): 4381-4386
[12] Lee M J, Han S, Jeon S H, . Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Letters , 2009, 9(4): 1476-1481
[13] Oka K, Yanagida T, Nagashima K, . Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires. Journal of the American Chemical Society , 2009, 131(10): 3434-3435
[14] Yun J-B, Kim S, Seo S, . Random and localized resistive switching observation in Pt/NiO/Pt. physica status solidi (RRL) – Rapid Research Letters , 2007, 1(6): 280-282
[15] Guan W, Long S, Liu Q, . Nonpolar nonvolatile resistive switching in Cu doped ZrO2. Electron Device Letters, IEEE , 2008, 29(5): 434-437
[16] Li Y, Long S, Lv H, . Improvement of resistive switching characteristics in ZrO2 film by embedding a thin TiOx layer. Nanotechnology , 2011, 22(25): 254028
[17] Wang Y, Liu Q, Long S, . Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology , 2010, 21(4): 045202
[18] Chan M Y, Zhang T, Ho V, . Resistive switching effects of HfO2 high-k dielectric. Microelectronic Engineering , 2008, 85(12): 2420-2424
[19] Lin K-L, Hou T-H, Shieh J, . Electrode dependence of filament formation in HfO2 resistive-switching memory. Journal of Applied Physics , 2011, 109(8): 084104 (7 pages)
[20] Li S-L, Gang J-L, Li J, . Reproducible low-voltage resistive switching in a low-initial-resistance Pr0.7Ca0.3MnO3 junction. Journal of Physics D: Applied Physics , 2008, 41(18): 185409
[21] Gang J-L, Li S-L, Liao Z-L, . Clockwise vs counter-clockwise I–V hysteresis of point-contact metal-tip/Pr0.7Ca0.3MnO3/Pt devices. Chinese Physics Letters , 2010, 27(2): 027301
[22] Yin K, Li M, Liu Y, . Resistance switching in polycrystalline BiFeO3 thin films. Applied Physics Letters , 2010, 97(4): 042101 (3 pages)
[23] Yang C H, Seidel J, Kim S Y, . Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nature Materials , 2009, 8(6): 485-493
[24] Chen X, Wu G, Zhang H, . Nonvolatile bipolar resistance switching effects in multiferroic BiFeO3 thin films on LaNiO3-electrodized Si substrates. Applied Physics A: Materials Science & Processing , 2010, 100(4): 987-990
[25] Szot K, Speier W, Bihlmayer G, . Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nature Materials , 2006, 5(4): 312-320
[26] Ni M C, Guo S M, Tian H F, . Resistive switching effect in SrTiO3-δ/Nb-doped SrTiO3 heterojunction. Applied Physics Letters , 2007, 91(18): 183502 (3 pages)
[27] Muenstermann R, Menke T, Dittmann R, . Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials , 2010, 22(43): 4819-4822
[28] Garcia V, Fusil S, Bouzehouane K, . Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature , 2009, 460(7251): 81-84
[29] Jeong W C, Lee B I, Joo S K. Three level, six state multilevel magnetoresistive RAM(MRAM). Journal of Applied Physics , 1999, 85(8): 4782-4784
[30] Wuttig M. Phase-change materials: towards a universal memory? Nature Materials , 2005, 4(4): 265-266
[31] Waser R, Dittmann R, Staikov G, . Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Advanced Materials , 2009, 21(25-26): 2632-2663
[32] Kwon D H, Kim K M, Jang J H, . Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotechnology , 2010, 5(2): 148-153
[33] Sawa A, Fujii T, Kawasaki M, . Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Applied Physics Letters , 2004, 85(18): 4073-4075
[34] Dong C Y, Shang D S, Shi L, . Roles of silver oxide in the bipolar resistance switching devices with silver electrode. Applied Physics Letters , 2011, 98(7): 072107 (3 pages)
[35] Meijer G I, Staub U, Janousch M, . Valence states of Cr and the insulator-to-metal transition in Cr-doped SrTiO3. Physical Review B: Condensed Matter and Materials Physics , 2005, 72(15): 155102
[36] Maksymovych P, Jesse S, Yu P, . Polarization control of electron tunneling into ferroelectric surfaces. Science , 2009, 324(5933): 1421-1425
[37] Kim S, Jeong H Y, Choi S Y, . Comprehensive modeling of resistive switching in the Al/TiOx/TiO2/Al heterostructure based on space-charge-limited conduction. Applied Physics Letters , 2010, 97(3): 033508 (3 pages)
[38] Lee M J, Lee C B, Lee D, . A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nature Materials , 2011, 10(8): 625-630
[39] Schindler C, Meier M, Waser R, . Resistive switching in Ag–Ge–Se with extremely low write currents. In: Non-Volatile Memory Technology Symposium, 2007. NVMTS '07 , 2007, 82-85
[40] Guan W, Liu M, Long S, . On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Applied Physics Letters , 2008, 93(22): 223506 (3 pages)
[41] Kim K M, Jeong D S, Hwang C S. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology , 2011, 22(25): 254002
[42] Chang S H, Chae S C, Lee S B, . Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors. Applied Physics Letters , 2008, 92(18): 183507 (3 pages)
[43] Larentis S, Cagli C, Nardi F, . Filament diffusion model for simulating reset and retention processes in RRAM. Microelectronic Engineering , 2011, 88(7): 1119-1123
[44] Waser R, Aono M. Nanoionics-based resistive switching memories. Nature Materials , 2007, 6(11): 833-840
[45] Zhu X, Zhuge F, Li M, . Microstructure dependence of leakage and resistive switching behaviours in Ce-doped BiFeO3 thin films. Journal of Physics D: Applied Physics , 2011, 44(41): 415104
[46] Zuo Q, Long S, Liu Q, . Self-rectifying effect in gold nanocrystal-embedded zirconium oxide resistive memory. Journal of Applied Physics , 2009, 106(7): 073724 (5 pages)
[47] Sim H, Seong D-J, Chang M, . Excellent resistance switching characteristics of Pt/single-crystal Nb-doped SrTiO3 Schottky junction. In: 21st Non-Volatile Semiconductor Memory Workshop, 2006. IEEE NVSMW 2006, 88-89
[48] Li M, Zhuge F, Zhu X, . Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches. Nanotechnology , 2010, 21(42): 425202
[49] Zhuge F, Hu B, He C, . Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon , 2011, 49(12): 3796-3802
[50] Bid A, Bora A, Raychaudhuri A K. Temperature dependence of the resistance of metallic nanowires (diameter≥15 nm): Applicability of Bloch-Grüneisen theorem. Physical Review B: Condensed Matter and Materials Physics , 2006, 74(3): 035426 (9 pages)
[51] Guo Y, Zhang Y F, Bao X Y, . Superconductivity modulated by quantum size effects. Science , 2004, 306(5703): 1915-1917
[52] Koch C C, Scarbrough J O, Kroeger D M. Effects of interstitial oxygen on the superconductivity of niobium. Physical Review B: Condensed Matter and Materials Physics , 1974, 9(3): 888-897
[53] Son J Y, Shin Y H. Direct observation of conducting filaments on resistive switching of NiO thin films. Applied Physics Letters , 2008, 92(22): 222106 (3 pages)
[54] Chae S C, Lee J S, Kim S, . Random circuit breaker network model for unipolar resistance switching. Advanced Materials , 2008, 20(6): 1154-1159
[55] Zhuge F, Peng S, He C, . Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments. Nanotechnology , 2011, 22(27): 275204
[56] Lee M H, Hwang C S. Resistive switching memory: observations with scanning probe microscopy. Nanoscale , 2011, 3(2): 490-502
[57] Choi S J, Park G S, Kim K H, . In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory. Advanced Materials , 2011, 23(29): 3272-3277
[58] Cho B, Yun J M, Song S, . Direct observation of Ag filamentary paths in organic resistive memory devices. Advanced Functional Materials , 2011, 21(20): 3976-3981
[59] Yang Y C, Pan F, Liu Q, . Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Letters , 2009, 9(4): 1636-1643
[60] Yao J, Sun Z, Zhong L, . Resistive switches and memories from silicon oxide. Nano Letters , 2010, 10(10): 4105-4110
[61] Sakamoto T, Lister K, Banno N, . Electronic transport in Ta2O5 resistive switch. Applied Physics Letters , 2007, 91(9): 092110 (3 pages)
[62] Park G S, Li X S, Kim D C, . Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Applied Physics Letters , 2007, 91(22): 222103 (3 pages)
[63] Tsuruoka T, Terabe K, Hasegawa T, . Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology , 2010, 21(42): 425205
[64] Terabe K, Hasegawa T, Nakayama T, . Quantized conductance atomic switch. Nature , 2005, 433(7021): 47-50
[65] Guo X, Schindler C, Menzel S, . Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Applied Physics Letters , 2007, 91(13): 133513 (3 pages)
[66] Liu Q, Sun J, Lv H, . Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Advanced Materials , 2012, 24(14): 1844-1849
[67] Yang Y, Gao P, Gaba S, . Observation of conducting filament growth in nanoscale resistive memories. Nature Communications , 2012, 3: 732
[68] Peng S, Zhuge F, Chen X, . Mechanism for resistive switching in an oxide-based electrochemical metallization memory. Applied Physics Letters , 2012, 100(7): 072101 (4 pages)
[69] Liu Q, Long S, Lv H, . Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano , 2010, 4(10): 6162-6168
[70] Lee W, Jung H J, Lee M H, . Oxygen surface exchange at grain boundaries of oxide ion conductors. Advanced Functional Materials , 2012, 22(5): 965-971
[71] Park C, Jeon S H, Chae S C, . Role of structural defects in the unipolar resistive switching characteristics of Pt/NiO/Pt structures. Applied Physics Letters , 2008, 93(4): 042102 (3 pages)
[72] Zou C, Chen B, Zhu X-J, . Local leakage current behaviours of BiFeO3 films. Chinese Physics B , 2011, 20(11): 117701
[73] Park J-W, Park J-W, Jung K, . Influence of oxygen content on electrical properties of NiO films grown by rf reactive sputtering for resistive random-access memory applications. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures , 2006, 24(5): 2205-2208
[74] Bae Y C, Lee A R, Kwak J S, . Dependence of resistive switching behaviors on oxygen content of the Pt/TiO2-x/Pt matrix. Current Applied Physics , 2011, 11(2): e66-e69
[75] Zhang H, Liu L, Gao B, . Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach. Applied Physics Letters , 2011, 98(4): 042105 (3 pages)
[76] Liu Q, Long S, Wang W, . Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions. Electron Device Letters, IEEE , 2009, 30(12): 1335-1337
[77] Fang Z, Yu H Y, Liu W J, . Temperature instability of resistive switching on HfOx-based RRAM devices. Electron Device Letters, IEEE , 2010, 31(5): 476-478
[78] Goux L, Czarnecki P, Chen Y Y, . Evidences of oxygen-mediated resistive-switching mechanism in TiN\HfO2\Pt cells. Applied Physics Letters , 2010, 97(24): 243509 (3 pages)
[79] Tsuruoka T, Terabe K, Hasegawa T, . Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Advanced Functional Materials , 2012, 22(1): 70-77
[80] Zhu X, Su W, Liu Y, . Observation of conductance quantization in oxide-based resistive switching memory. Advanced Materials , 2012, 10.1002/adma.201201506
[81] Ohnishi H, Kondo Y, Takayanagi K. Quantized conductance through individual rows of suspended gold atoms. Nature , 1998, 395(6704): 780-783
[82] Seo J W, Park J W, Lim K S, . Transparent resistive random access memory and its characteristics for nonvolatile resistive switching. Applied Physics Letters , 2008, 93(22): 223505 (3 pages)
[83] Li C Z, He H X, Bogozi A, . Molecular detection based on conductance quantization of nanowires. Applied Physics Letters , 2000, 76(10): 1333-1335
[84] Shu C, Li C Z, He H X, . Fractional conductance quantization in metallic nanoconstrictions under electrochemical potential control. Physical Review Letters , 2000, 84(22): 5196-5199
[85] Linn E, Rosezin R, Kügeler C, . Complementary resistive switches for passive nanocrossbar memories. Nature Materials , 2010, 9(5): 403-406