Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials

Andris SUTKA, Gundars MEZINSKIS()

PDF(896 KB)
PDF(896 KB)
Front. Mater. Sci. ›› 2012, Vol. 6 ›› Issue (2) : 128-141. DOI: 10.1007/s11706-012-0167-3
REVIEW ARTICLE
REVIEW ARTICLE

Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials

  • Andris SUTKA, Gundars MEZINSKIS()
Author information +
History +

Abstract

Recent developments and trends of sol–gel auto-combustion method for spinel ferrite nanomaterial synthesis are briefly discussed and critically analyzed. The analysis of various parameters of reaction which could be used for better understanding of synthesis process and control of microstructure and property of spinel ferrite nanopowder products was the main objective of this review article. Special attention was paid to variety of particle size and phase purity. For these purposes the correlation between complexant, oxygen balance and combustion process chemical additives, as well as heating mechanism and atmosphere, was established. These results are relevant from standpoints of both application and processing of ferrites.

Keywords

ferrite / synthesis / sol–gel / auto-combustion / nanomaterial

Cite this article

Download citation ▾
Andris SUTKA, Gundars MEZINSKIS. Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front Mater Sci, 2012, 6(2): 128‒141 https://doi.org/10.1007/s11706-012-0167-3

References

[1] Chavan S M, Babrekar M K, More S S, . Structural and optical properties of nanocrystalline Ni–Zn ferrite thin films. Journal of Alloys and Compounds , 2010, 507(1): 21-25
[2] Adam J D, Davis L E, Dionne G F, . Ferrite devices and materials. IEEE Transactions on Microwave Theory and Techniques , 2002, 50(3): 721-737
[3] Kulikowski J. Soft magnetic ferrites - development or stagnation? Journal of Magnetism and Magnetic Materials , 1984, 41(1-3): 56-62
[4] Harris V G, Geiler A, Chen Y, . Recent advances in processing and applications of microwave ferrites. Journal of Magnetism and Magnetic Materials , 2009, 321(14): 2035-2047
[5] Qu Y, Yang H, Yang N, . The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Materials Letters , 2006, 60(29-30): 3548-3552
[6] Kasapoglu N, Birsoz B, Baykal A, . Synthesis and magnetic properties of octahedral ferrite NixCo1-xFe2O4 nanocrystals. Central European Journal of Chemistry , 2007, 5(2): 570-580
[7] Cao S W, Zhu Y J, Cheng G F, . ZnFe2O4 nanoparticles: microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol. Journal of Hazardous Materials , 2009, 171(1-3): 431-435
[8] Liu Y-L, Liu Z-M, Yang Y, . Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sensors and Actuators B: Chemical , 2005, 107(2): 600-604
[9] Ahmed T T, Rahman I Z, Rahman M A. Study on the properties of the copper substituted NiZn ferrites. Journal of Materials Processing Technology , 2004, 153-154: 797-803
[10] Valenzuela R.Magnetic Ceramics. 1st ed. Melbourne: Cambridge University Press, 3-23
[11] Mouallem-Bahout M, Bertrand S, Pena O. Synthesis and characterization of ZnxNi1-xFe2O4 spinels prepared by citrate precursor. Journal of Solid State Chemistry , 2005, 178(4): 1080-1086
[12] Gul I H, Ahmed W, Maqsood A. Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. Journal of Magnetism and Magnetic Materials , 2008, 320(3-4): 270-275
[13] Zahi S, Hashim M, Daud A R. Synthesis, magnetic properties and microstructure of Ni–Zn ferrite by sol–gel technique. Journal of Magnetism and Magnetic Materials , 2007, 308(2): 177-182
[14] Ko?ak A, Makovec D, ?nidar?i? A, . Preparation of MnZn-ferrite with microemulsion technique. Journal of the European Ceramic Society , 2004, 24(6): 959-962
[15] Jiao X, Chen D, Hu Y. Hydrothermal synthesis of nanocrystalline Mx(Zn1-x)Fe2O4 (M= Ni, Mn, Co; x = 0.40-0.60) powders. Materials Research Bulletin , 2002, 37(9): 1583-1588
[16] Takayama A, Okuya M, Kaneko S. Spray pyrolysis deposition of NiZn ferrite thin films. Solid State Ionics , 2004, 172(1-4): 257-260
[17] Thakur S, Katyal S C, Singh M. Structural and magnetic properties of nano nickel–zinc ferrite synthesized by reverse micelle technique. Journal of Magnetism and Magnetic Materials , 2009, 321(1): 1-7
[18] Sarangi P P, Vadera S R, Patra M K, . Synthesis and characterization of pure single phase Ni–Zn ferrite nanopowders by oxalate based precursor method. Powder Technology , 2010, 203(2): 348-353
[19] Balaji S, Kalai Selvan K, John Berchmans L, . Combustion synthesis and characterization of Sn4+ substituted nanocrystalline NiFe2O4. Materials Science and Engineering B , 2005, 119(2): 119-124
[20] Aruna S T, Mukasyan A S. Combustion synthesis and nanomaterials. Current Opinion in Solid State and Materials Science , 2008, 12(3-4): 44-50
[21] Randhawa B S, Dosanjh H S, Kumar N. Synthesis of lithium ferrite by precursor and combustion methods: A comparative study. Journal of Radioanalytical and Nuclear Chemistry , 2007, 274(3): 581-591
[22] Lee S-P, Chen Y-J, Ho C-M, . A study on synthesis and characterization of the core–shell materials of Mn1-xZnxFe2O4–polyaniline. Materials Science and Engineering B , 2007, 143(1-3): 1-6
[23] Sutka A, Mezinskis G, Pludons A, . Characterization of sol–gel auto-combustion derived spinel ferrite nano-materials. Power Engineering , 2010, 56(3-4): 254-259
[24] Sutka A, Gross K A, Mezinskis G, . The effect of heating conditions on the properties of nano- and microstructured Ni–Zn ferrite. Physica Scripta , 2011, 83(2): 025601 (6 pages)
[25] Thant A A, Srimala S, Kaung P, . Low temperature synthesis of MgFe2O4 soft ferrite nanocrystallites. Journal of the Australian Ceramic Society , 2010, 46(1): 11-14
[26] Nayak P K. Synthesis and characterization of cadmium ferrite. Materials Chemistry and Physics , 2008, 112(1): 24-26
[27] Shobana M K, Rajendran V, Jeyasubramanian K, . Preparation and characterisation of NiCo ferrite nanoparticles. Materials Letters , 2007, 61(13): 2616-2619
[28] Mallapur M M, Shaikh P A, Kambale R C, . Structural and electrical properties of nanocrystalline cobalt substituted nickel zinc ferrite. Journal of Alloys and Compounds , 2009, 479(1-2): 797-802
[29] Yue Z, Zhou J, Li L, . Effect of copper on the electromagnetic properties of Mg–Zn–Cu ferrites prepared by sol–gel auto-combustion method. Materials Science and Engineering B , 2001, 86(1): 64-69
[30] Azadmanjiri J, Salehani H K, Barati M R, . Preparation and electromagnetic properties of Ni1-xCuxFe2O4 nanoparticle ferrites by sol–gel auto-combustion method. Materials Letters , 2007, 61(1): 84-87
[31] Yue Z, Zhou J, Li L, . Synthesis of nanocrystalline NiCuZn ferrite powders by sol–gel auto-combustion method. Journal of Magnetism and Magnetic Materials , 2000, 208(1-2): 55-60
[32] Selvan R K, Augustin C O, Berchmans L J, . Combustion synthesis of CuFe2O4. Materials Research Bulletin , 2003, 38(1): 41-54
[33] Guo L, Shen X, Meng X, . Effect of Sm3+ ions doping on structure and magnetic properties of nanocrystalline NiFe2O4 fibers. Journal of Alloys and Compounds , 2010, 490(1-2): 301-306
[34] Gupta N, Verma A, Kashyap S C, . Dielectric behavior of spin-deposited nanocrystalline nickel–zinc ferrite thin films processed by citrate-route. Solid State Communications , 2005, 134(10): 689-694
[35] Azadmanjiri J. Structural and electromagnetic properties of Ni–Zn ferrites prepared by sol–gel combustion method. Materials Chemistry and Physics , 2008, 109(1): 109-112
[36] de Biasi R S, Figueiredo A B S, Fernandes A A R, . Synthesis of cobalt ferrite nanoparticles using combustion waves. Solid State Communications , 2007, 144(1-2): 15-17
[37] Shukla R, Ningthoujam R S, Umare S S, . Decrease of superparamagnetic fraction at room temperature in ultrafine CoFe2O4 particles by Ag doping. Hyperfine Interactions , 2008, 184(1-3): 217-225
[38] Aphesteguy J C, Damiani A, DiGiovanni D, . Microwave-absorbing characteristics of epoxy resin composites containing nanoparticles of NiZn- and NiCuZn-ferrites. Physica B: Condensed Matter , 2009, 404(18): 2713-2716
[39] Atif M, Nadeem M, Grossinger R, . Studies on the magnetic, magnetostrictive and electrical properties of sol–gel synthesized Zn doped nickel ferrite. Journal of Alloys and Compounds , 2011, 509(18): 5720-5724
[40] Sutka A, Stingaciu M, Mezinskis G, . An alternative method to modify the sensitivity of p-type NiFe2O4 gas sensor. Journal of Materials Science , 2012, 47(6): 2856-2863
[41] Doroftei C, Rezlescu E, Rezlescu N, . Microstructure and humidity sensitive properties of MgFe2O4 ferrite with Sn and Mo substitutions prepared by selfcombustion method. Journal of Optoelectronics and Advanced Materials , 2006, 8(3): 1012-1015
[42] Costa A C F M, Lula R T, Kiminami R H G A, . Preparation of nanostructured NiFe2O4 catalysts by combustion reaction. Journal of Materials Science , 2006, 41(15): 4871-4875
[43] Guo X, Qi Y, Li X, . Preparation, characteization and photocatlytic properties of nanometer zinc ferrite. Journal of University of Science and Technology Beijing , 2004, 11(5): 474-476
[44] Airimioaei M, Ciomaga C E, Apostolescu N, . Synthesis and functional properties of the Ni1-xMnxFe2O4 ferrites. Journal of Alloys and Compounds , 2011, 509(31): 8065-8072
[45] Hwang C-C, Tsai J-S, Huang T-H, . Combustion synthesis of Ni–Zn ferrite powder - influence of oxygen balance value. Journal of Solid State Chemistry , 2005, 178(1): 382-389
[46] Costa A C F M, Morelli M R, Kiminami R H G A. Combustion synthesis: Effect of urea on the reaction and characteristics of Ni–Zn ferrite powders. Journal of Materials Synthesis and Processing , 2001, 9(6): 347-352
[47] Mangalaraja R V, Ananthakumar S, Manohar P, . Initial permeability studies of Ni–Zn ferrites prepared by flash combustion technique. Materials Science and Engineering A , 2003, 355(1-2): 320-324
[48] Mangalaraja R V, Ananthakmar S, Manohar P, . Characterization of Mn0.8Zn0.2Fe2O4 synthesized by flash combustion technique. Materials Science and Engineering A , 2004, 367(1-2): 301-305
[49] Sertkol M, Kōseoglu Y, Baykal A, . Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nano particles via microwave-assisted combustion route. Journal of Magnetism and Magnetic Materials , 2010, 322(7): 866-871
[50] Yu L, Cao S, Liu Y, . Thermal and structural analysis on the nanocrystalline NiCuZn ferrite synthesis in different atmospheres. Journal of Magnetism and Magnetic Materials , 2006, 301(1): 100-106
[51] Wu K H, Ting T H, Li M C, . Sol–gel auto-combustion synthesis of SiO2-doped NiZn ferrite by using various fuels. Journal of Magnetism and Magnetic Materials , 2006, 298(1): 25-32
[52] Hwang C-C, Tsai J-S, Huang T-H. Combustion synthesis of Ni–Zn ferrite by using glycine and metal nitrates - investigations of precursor homogeneity, product reproducibility, and reaction mechanism. Materials Chemistry and Physics , 2005, 93(2-3): 330-336
[53] Costa A C F M, Morelli M R, Kiminami R H G A. Microstructure and magnetic properties of Ni1-xZnxFe2O4 synthesized by combustion reaction. Journal of Materials Science , 2007, 42(3): 779-783
[54] George M, mary John A, Nair S S, . Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. Journal of Magnetism and Magnetic Materials , 2006, 302(1): 190-195
[55] Mukasyan A S, Epstein P, Dinka P. Solution combustion synthesis of nanomaterials. Proceedings of the Combustion Institute , 2007, 31(2): 1789-1795
[56] Patil J Y, Khandekar M S, Mulla I S, . Combustion synthesis of magnesium ferrite as liquid petroleum gas (LPG) sensor: Effect of sintering temperature. Current Applied Physics , 2012, 12(1): 319-324
[57] Hwang C C, Wu T Y, Wan J, . Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders. Materials Science and Engineering B , 2004, 111(1): 49-56
[58] Wu K H, Ting T H, Yang C C, . Effect of complexant/fuel on the chemical and electromagnetic properties of SiO2-doped Ni–Zn ferrite. Materials Science and Engineering B , 2005, 123(3): 227-233
[59] Hu P, Pan D, Wang X F, . Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition. Journal of Magnetism and Magnetic Materials , 2011, 323(5): 569-573
[60] Costa A C F M, Silva V J, Xin C C, . Effect of urea and glycine fuels on the combustion reaction synthesis of Mn–Zn ferrites: Evaluation of morphology and magnetic properties. Journal of Alloys and Compounds , 2010, 495(2): 503-505
[61] Verma S, Karande J, Patidar A, . Low-temperature synthesis of nanocrystalline powders of lithium ferrite by an autocombustion method using citric acid and glycine. Materials Letters , 2005, 59(21): 2630-2633
[62] Costa A C F M, Vieira D A, Silva V J, . Synthesis of the Ni–Zn–Sm ferrites using microwaves energy. Journal of Alloys and Compounds , 2009, 483(1-2): 37-39
[63] Salunkhe A B, Khot V M, Phadatare M R, . Combustion synthesis of cobalt ferrite nanoparticles - Influence of fuel to oxidizer ratio. Journal of Alloys and Compounds , 2012, 514: 91-96
[64] Costa A C F M, Leite A M D, Ferreira H S, . Brown pigment of the nanopowder spinel ferrite prepared by combustion reaction. Journal of the European Ceramic Society , 2008, 28(10): 2033-2037
[65] Kambale R C, Adhate N R, Chougule B K, . Magnetic and dielectric properties of mixed spinel Ni–Zn ferrites synthesized by citrate-nitrate combustion method. Journal of Alloys and Compounds , 2010, 491(1-2): 372-377
[66] Qiu J, Liang L, Gu M. Nanocrystalline structure and magnetic properties of barium ferrite particles prepared via glycine as a fuel. Materials Science and Engineering A , 2005, 393(1-2): 361-365
[67] Yue Z, Li L, Zhou J, . Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate–citrate gels. Materials Science and Engineering B , 1999, 64(1): 68-72
[68] Liu C, Zou B, Rondinone A J, . Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. Journal of the American Chemical Society , 2000, 122(26): 6263-6267
[69] Azadmanjiri J, Seyyed Ebrahimi S A, Salehani H K. Magnetic properties of nanosize NiFe2O4 particles synthesized by sol–gel auto combustion method. Ceramics International , 2007, 33(8): 1623-1625
[70] Xue H, Li Z, Wang X, . Facile synthesis of nanocrystalline zinc ferrite via self-propagating combustion method. Materials Letters , 2007, 61(2): 347-350
[71] Liu J, Zhang W, Guo C, . Synthesis and magnetic properties of quasi-single domain M-type barium hexaferrite powders via sol–gel auto-combustion: Effects of pH and the ratio of citric acid to metal ions (CA/M). Journal of Alloys and Compounds , 2009, 479(1-2): 863-869
[72] Waqas H, Qureshi A H. Influence of pH on nanosized Mn–Zn ferrite synthesized by sol–gel auto combustion process. Journal of Thermal Analysis and Calorimetry , 2009, 98(2): 355-360
[73] Yue Z, Guo W, Zhou J, . Synthesis of nanocrystalline ferrites by sol–gel combustion process: the influence of pH value of solution. Journal of Magnetism and Magnetic Materials , 2004, 270(1-2): 216-223
[74] Kapse V D, Ghosh S A, Raghuwanshi F C, . Nanocrystalline spinel Ni0.6Zn0.4Fe2O4: A novel material for H2S sensing. Materials Chemistry and Physics , 2009, 113(2-3): 638-644
[75] Kadu A V, Jagtap S V, Chaudhari G N. Studies on the preparation and ethanol gas sensing properties of spinel Zn0.6Mn0.4Fe2O4 nanomaterials. Current Applied Physics , 2009, 9(6): 1246-1251
[76] Vijaya Bhasker Reddy P, Ramesh B, Gopal Reddy C. Electrical conductivity and dielectric properties of zinc substituted lithium ferrites prepared by sol–gel method. Physica B: Condensed Matter , 2010, 405(7): 1852-1856
[77] Sreeja V, Vijayanand S, Deka S, . Magnetic and M?ssbauer spectroscopic studies of NiZn ferrite nanoparticles synthesized by a combustion method. Hyperfine Interactions , 2008, 183(1-3): 99-107
[78] Deka S, Joy P A. Characterization of nanosized NiZn ferrite powders synthesized by an autocombustion method. Materials Chemistry and Physics , 2006, 100(1): 98-101
[79] Vivekanandhan S, Venkateswarlu M, Satyanarayana N. Effect of ethylene glycol on polyacrylicacid based combustion process for the synthesis of nano-crystalline nickel ferrite (NiFe2O4). Materials Letters , 2004, 58(22-23): 2717-2720
[80] Wu K H, Yu C H, Chang Y C, . Effect of pH on the formation and combustion process of sol–gel auto-combustion derived NiZn ferrite/SiO2 composites. Journal of Solid State Chemistry , 2004, 177(11): 4119-4125
[81] Costa A C F M, Tortella E, Morelli M R, . Effect of heating conditions during combustion synthesis on the characteristics of Ni0.5Zn0.5Fe2O4 nanopowders. Journal of Materials Science , 2002, 37(17): 3569-3572
[82] Toksha B G, Shirsath S E, Patange S M, . Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol–gel auto combustion method. Solid State Communications , 2008, 147(11-12): 479-483
[83] Xiang J, Shen X, Meng X. Preparation of Co-substituted MnZn ferrite fibers and their magnetic properties. Materials Chemistry and Physics , 2009, 114(1): 362-366
[84] Zhang G, Li C, Cheng F, . ZnFe2O4 tubes: Synthesis and application to gas sensors with high sensitivity and low-energy consumption. Sensors and Actuators B: Chemical , 2007, 120(2): 403-410
[85] Xiang J, Shen X, Song F, . One-dimensional NiCuZn ferrite nanostructures: Fabrication, structure, and magnetic properties. Journal of Solid State Chemistry , 2010, 183(6): 1239-1244
[86] Zhang C-Y, Shen X-Q, Zhou J-X, . Preparation of spinel ferrite NiFe2O4 fibres by organic gel-thermal decomposition process. Journal of Sol–Gel Science and Technology , 2007, 42(1): 95-100
AI Summary AI Mindmap
PDF(896 KB)

Accesses

Citations

Detail

Sections
Recommended

/