[1] Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors.
Journal of Power Sources , 2006, 157(1): 11-27
[2] Miller J R, Simon P. Electrochemical capacitors for energy management.
Science , 2008, 321(5889): 651-652
[3] Wang Y, Shi Z Q, Huang Y,
. Supercapacitor devices based on graphene materials.
The Journal of Physical Chemistry C , 2009, 113(30): 13103-13107
[4] Stoller M D, Park S J, Zhu Y W,
. Graphene-based ultracapacitors.
Nano Letters , 2008, 8(10): 3498-3502
[5] Si Y C, Samulski E T. Exfoliated graphene separated by platinum nanoparticles.
Chemistry of Materials , 2008, 20(21): 6792-6797
[6] Yoo E J, Kim J, Hosono E,
. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries.
Nano Letters , 2008, 8(8): 2277-2282
[7] Xu C, Wang X, Zhu J W. Graphene - metal particle nanocomposites.
The Journal of Physical Chemistry C , 2008, 112(50): 19841-19845
[8] Wang D H, Kou R, Choi D,
. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage.
ACS Nano , 2010, 4(3): 1587-1595
[9] Zhang K, Zhang L L, Zhao X S,
. Graphene/polyaniline nanofiber composites as supercapacitor electrodes.
Chemistry of Materials , 2010, 22(4): 1392-1401
[10] Zhang D C, Zhang X, Chen Y,
. Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors.
Journal of Power Sources , 2011, 196(14): 5990-5996
[11] Vignali M, Edwards R A H, Serantoni M,
. Electropolymerized polythiophene layer extracted from the interface between two immiscible electrolyte solutions: Current–time analysis.
Journal of Electroanalytical Chemistry , 2006, 591(1): 59-68
[12] Jang J. Conducting polymer nanomaterials and their applications.
Advances in Polymer Science , 2006, 199: 189-260
[13] Zhou Y K, He B L, Zhou W J,
. Preparation and electrochemistry of SWNT/PANI composite films for electrochemical capacitors.
Journal of the Electrochemical Society , 2004, 151(7): A1052-A1057
[14] Hu C-C, Chu C-H. Electrochemical and textural characterization of iridium-doped polyaniline films for electrochemical capacitors.
Materials Chemistry and Physics , 2000, 65(3): 329-338
[15] Ryu K S, Kim K M, Park N G,
. Symmetric redox supercapacitor with conducting polyaniline electrodes.
Journal of Power Sources , 2002, 103(2): 305-309
[16] Khomenko V, Frackowiak E, Béguin F. Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations.
Electrochimica Acta , 2005, 50(12): 2499-2506
[17] Li L X, Song H H, Zhang Q C,
. Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors.
Power Source , 2009, 187(1): 268-274
[18] Benz M, Euler W B, Gregory O J. The role of solution phase water on the deposition of thin films of poly(vinylidene fluoride).
Macromolecules , 2002, 35(7): 2682-2688
[19] Lin D-J, Chang H-H, Beltsios K,
. Effect of postcasting heat-treatment on the structure and properties of semicrystalline phase-inversion poly(vinylidene fluoride) membranes.
Journal of Polymer Science Part B: Polymer Physics , 2009, 47(19): 1880-1893
[20] Hummers W S Jr, Offeman R E. Preparation of graphitic oxide.
Journal of the American Chemical Society , 1958, 80(6): 1339
[21] Park S J, An J, Jung I,
. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents.
Nano Letters , 2009, 9(4): 1593-1597
[22] Conway B E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications.
New York:
Kluwer Academic/Plenum Press, 1999
[23] Titelman G I, Gelman V, Bron S,
. Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide.
Carbon , 2005, 43(3): 641-649
[24] Wu Z S, Ren W C, Gao L B,
. Synthesis of high-quality graphene with a pre-determined number of layers.
Carbon , 2009, 47(2): 493-499
[25] Stankovich S, Dikin D A, Piner R D,
. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide.
Carbon , 2007, 45(7): 1558-1565
[26] Becerril H A, Mao J, Liu Z,
. Evaluation of solution-processed reduced graphene oxide films as transparent conductors.
ACS Nano , 2008, 2(3): 463-470
[27] Wang H L, Robinson J T, Li X L,
. Solvothermal reduction of chemically exfoliated graphene sheets.
Journal of the American Chemical Society , 2009, 131(29): 9910-9911
[28] Sun Z Z, Yan Z, Yao J,
. Growth of graphene from solid carbon sources.
Nature , 2010, 468(7323): 549-552
[29] Wang C, Li D, Too C O,
. Electrochemical properties of graphene paper electrodes used in lithium batteries.
Chemistry of Materials , 2009, 21(13): 2604-2606
[30] Liao K H, Mittal A, Bose S,
. Aqueous only route toward graphene from graphite oxide.
ACS Nano , 2011, 5(2): 1253-1258
[31] Chen S, Zhu J W, Wu X D,
. Graphene oxide–MnO
2 nanocomposites for supercapacitors.
ACS Nano , 2010, 4(5): 2822-2830
[32] Zhang J, Lee J-K, Wu Y,
. Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes.
Nano Letters , 2003, 3(3): 403-407
[33] Byl O, Kondratyuk P, Forth S T,
. Adsorption of CF
4 on the internal and external surfaces of opened single-walled carbon nanotubes: a vibrational spectroscopy study.
Journal of the American Chemical Society , 2003, 125(19): 5889-5896
[34] Li H P, Zhou B, Lin Y,
. Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes.
Journal of the American Chemical Society , 2004, 126(4): 1014-1015
[35] Zhao J J, Lu J P, Han J,
. Noncovalent functionalization of carbon nanotubes by aromatic organic molecules.
Applied Physics Letters , 2003, 82(21): 3746-3748
[36] Guo C X, Li C M. A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance.
Energy & Environmental Science , 2011, 4(11): 4504-4507
[37] Guo C X, Yang H B, Sheng Z M,
. Layered graphene/quantum dots for photovoltaic devices.
Angewandte Chemie International Edition , 2010, 49(17): 3014-3017
[38] Gregorio R Jr. Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions.
Journal of Applied Polymer Science , 2006, 100(4): 3272-3279
[39] Conway B E, Pell W G. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices.
Journal of Solid State Electrochemistry , 2003, 7(9): 637-644
[40] Simon P, Gogotsi Y. Materials for electrochemical capacitors.
Nature Materials , 2008, 7(11): 845-854
[41] Li F H, Song J F, Yang H F,
. One-step synthesis of graphene/SnO
2 nanocomposites and its application in electrochemical supercapacitors.
Nanotechnology , 2009, 20(45): 455602 (6 pages)
[42] Sugimoto W, Iwata H, Yokoshima K,
. Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance.
The Journal of Physical Chemistry B , 2005, 109(15): 7330-7338
[43] Park S, An J, Piner R D,
. Aqueous suspension and characterization of chemically modified graphene sheets.
Chemistry of Materials , 2008, 20(21): 6592-6594
[44] Zhang K, Mao L, Zhang L L,
. Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes.
Journal of Materials Chemistry , 2011, 21(20): 7302-7307
[45] Biswas S, Drzal L T. Multilayered nano-architecture of variable sized graphene nanosheets for enhanced supercapacitor electrode performance.
ACS Applied Materials & Interfaces , 2010, 2(8): 2293-2300