PDF(379 KB)
RESEARCH ARTICLE
RESEARCH ARTICLE
Cobalt-based layered double hydroxides as oxygen evolving electrocatalysts in neutral eletrolyte
- Hong LIN1(), Ye ZHANG1, Gang WANG2, Jian-Bao LI1,3
Author information
+
1. State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 2. College of Chemical Engineering, Qinghai University, Xining 810016, China; 3. Key Laboratory of Ministry of Education for Application Technology of Chemical Materials in Hainan Superior Resources, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Chemical Engineering, Hainan University, Haikou 570228, China
Corresponding author: LIN Hong,Email:hong-lin@tsinghua.edu.cn
Show less
History
+
Received |
Accepted |
Published |
05 Feb 2012 |
08 Mar 2012 |
05 Jun 2012 |
Issue Date |
|
05 Jun 2012 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] Eisenberg R, Gray H B. Preface on making oxygen. Inorganic Chemistry , 2008, 47(6): 1697–1699
[2] Suntivich J, May K J, Gasteiger H A, . A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science , 2011, 334(6061): 1383–1385
[3] Dinc? M, Surendranath Y, Nocera D G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proceedings of the National Academy of Sciences of the United States of America , 2010, 107(23): 10337–10341
[4] Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science , 2008, 321(5892): 1072–1075
[5] Cui B, Lin H, Li J-B, . Core–ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications. Advanced Functional Materials , 2008, 18(9): 1440–1447
[6] Li Y, Hasin P, Wu Y. NixCo3-xO4 nanowire arrays for electrocatalytic oxygen evolution. Advanced Materials , 2010, 22(17): 1926–1929
[7] Hetterscheid D G H, Reek J N H. Me2-NHC based robust Ir catalyst for efficient water oxidation. Chemical Communications , 2011, 47(9): 2712–2714
[8] Kanan M W, Surendranath Y, Nocera D G. Cobalt-phosphate oxygen-evolving compound. Chemical Society Reviews , 2009, 38(1): 109–114
[9] Kanan M W, Yano J, Surendranath Y, . Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. Journal of the American Chemical Society , 2010, 132(39): 13692–13701
[10] Surendranath Y, Dinca M, Nocera D G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. Journal of the American Chemical Society , 2009, 131(7): 2615–2620
[11] Surendranath Y, Kanan M W, Nocera D G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. Journal of the American Chemical Society , 2010, 132(46): 16501–16509
[12] Esswein A J, Surendranath Y, Reece S Y, . Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters. Energy & Environmental Science , 2011, 4(2): 499–504
[13] Young E R, Nocera D G, Bulovic V. Direct formation of a water oxidation catalyst from thin-film cobalt. Energy & Environmental Science , 2010, 3(11): 1726–1728
[14] Gerken J B, McAlpin J G, Chen J Y C, . Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: The thermodynamic basis for catalyst structure, stability, and activity. Journal of the American Chemical Society , 2011, 133(36): 14431–14442
[15] Jiao F, Frei H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angewandte Chemie International Edition , 2009, 48(10): 1841–1844
[16] Liang J, Ma R, Iyi N, . Topochemical Synthesis, anion exchange, and exfoliation of Co–Ni layered double hydroxides: a route to positively charged Co–Ni hydroxide nanosheets with tunable composition. Chemistry of Materials , 2009, 22(2): 371–378
[17] Ma R, Liu Z, Takada K, . Synthesis and exfoliation of Co2+–Fe3+ layered double hydroxides: an innovative topochemical approach. Journal of the American Chemical Society , 2007, 129(16): 5257–5263
[18] Ma R, Osada M, Hu L, . Self-assembled nanofilm of monodisperse cobalt hydroxide hexagonal platelets: topotactic conversion into oxide and resistive switching. Chemistry of Materials , 2010, 22(23): 6341–6346
[19] Ma R, Takada K, Fukuda K, . Topochemical synthesis of monometallic (Co2+–Co3+) layered double hydroxide and its exfoliation into positively charged Co(OH)2 nanosheets. Angewandte Chemie International Edition , 2008, 47(1): 86–89
[20] Silva C G, Bouizi Y, Fornés V, . Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water. Journal of the American Chemical Society , 2009, 131(38): 13833–13839
[21] Lee Y, Choi J H, Jeon H J, . Titanium-embedded layered double hydroxides as highly efficient water oxidation photocatalysts under visible light. Energy & Environmental Science , 2011, 4(3): 914–920
[22] Liu X-M, Zhang Y-H, Zhang X-G, . Studies on Me/Al-layered double hydroxides (Me= Ni and Co) as electrode materials for electrochemical capacitors. Electrochimica Acta , 2004, 49(19): 3137–3141
[23] Coq B, Tichit D, Ribet S. Co/Ni/Mg/Al layered double hydroxides as precursors of catalysts for the hydrogenation of nitriles: hydrogenation of acetonitrile. Journal of Catalysis , 2000, 189(1): 117–128
[24] Géraud E, Prévot V, Leroux F. Synthesis and characterization of macroporous MgAl LDH using polystyrene spheres as template. Journal of Physics and Chemistry of Solids , 2006, 67(5–6): 903–908
[25] Jiang J, Zhu J, Ding R, . Co–Fe layered double hydroxide nanowall array grown from an alloy substrate and its calcined product as a composite anode for lithium-ion batteries. Journal of Materials Chemistry , 2011, 21(40): 15969–15974
[26] Yin Q, Tan J M, Besson C, . A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science , 2010, 328(5976): 342–345
[27] Tahir A A, Wijayantha K G U, Saremi-Yarahmadi S, . Nanostructured α-Fe2O3 thin films for photoelectrochemical hydrogen generation. Chemistry of Materials , 2009, 21(16): 3763–3772
[28] Morita M, Iwakura C, Tamura H. The anodic characteristics of manganese dioxide electrodes prepared by thermal decomposition of manganese nitrate. Electrochimica Acta , 1977, 22(4): 325–328