Carbon nanomaterials: controlled growth and field-effect transistor biosensors

Xiao-Na WANG1,2, Ping-An HU1,2()

PDF(1496 KB)
PDF(1496 KB)
Front. Mater. Sci. ›› 2012, Vol. 6 ›› Issue (1) : 26-46. DOI: 10.1007/s11706-012-0160-x
REVIEW ARTICLE
REVIEW ARTICLE

Carbon nanomaterials: controlled growth and field-effect transistor biosensors

  • Xiao-Na WANG1,2, Ping-An HU1,2()
Author information +
History +

Abstract

Carbon nanostructures, including carbon nanotubes (CNTs) and graphene, have been studied extensively due to their special structures, excellent electrical properties and high chemical stability. With the development of nanotechnology and nanoscience, various methods have been developed to synthesize CNTs/graphene and to assemble them into microelectronic/sensor devices. In this review, we mainly demonstrate the latest progress in synthesis of CNTs and graphene and their applications in field-effect transistors (FETs) for biological sensors.

Keywords

carbon nanotube (CNT) / graphene / preparation / field-effect transistor (FET) / biosensor

Cite this article

Download citation ▾
Xiao-Na WANG, Ping-An HU. Carbon nanomaterials: controlled growth and field-effect transistor biosensors. Front Mater Sci, 2012, 6(1): 26‒46 https://doi.org/10.1007/s11706-012-0160-x

References

[1] Kroto H W, Heath J R, O’Brien S C, . C60: Buckminsterfullerene. Nature , 1985, 318(6042): 162–163
[2] Iijima S. Helical microtubules of graphitic carbon. Nature , 1991, 354(6348): 56–58
[3] Novoselov K S, Geim A K, Morozov S V, . Electric field effect in atomically thin carbon films. Science , 2004, 306(5696): 666–669
[4] Jorio A, Dresselhaus G, Dresselhaus M S. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure Properties and Applications. Berlin, Heidelberg: Springer-Verlag Berlin/Heidelberg, 2008
[5] de Heer W A, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source. Science , 1995, 270(5239): 1179–1180
[6] Liu C, Fan Y Y, Liu M, . Hydrogen storage in single-walled carbon nanotubes at room temperature. Science , 1999, 286(5442): 1127–1129
[7] Zandonella C. Is it all just a pipe dream? Nature , 2001, 410(6830): 734–735
[8] Wu Z C, Chen Z H, Du X, . Transparent, conductive carbon nanotube films. Science , 2004, 305(5688): 1273–1276
[9] Zhang D H, Ryu K, Liu X L, . Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Letters , 2006, 6(9): 1880–1886
[10] Zhang M, Fang S L, Zakhidov A A, . Strong, transparent, multifunctional, carbon nanotube sheets. Science , 2005, 309(5738): 1215–1219
[11] Wei J Q, Zhu H W, Wu D H, . Carbon nanotube filaments in household light bulbs. Applied Physics Letters , 2004, 84(24): 4869–4871
[12] Pushparaj V L, Shaijumon M M, Kumar A, . Flexible energy storage devices based on nanocomposite paper. Proceeding of the National Academy of Sciences of the United States of America , 2007, 104(34): 13574–13577
[13] Kim S N, Rusling J F, Papadimitrakopoulos F. Carbon nanotubes for electronic and electrochemical detection of biomolecules. Advanced Materials , 2007, 19(20): 3214–3228
[14] Sugai T, Yoshida H, Shimada T, . New synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc dischargs. Nano Letters , 2003, 3(6): 769–773
[15] Montoro L A, Lofrano R C Z, Rosolen J M. Synthesis of single-walled and multi-walled carbon nanotubes by arc-water method. Carbon , 2005, 43(1): 200–203
[16] Bolshakov A P, Uglov S A, Saveliev A V, . A novel CW laser-power method of carbon single-wall nanotubes production. Diamond and Related Materials , 2002, 11(3–6): 927–930
[17] Zhang H Y, Ding Y, Wu C Y, . The effect of laser power on the formation of carbon nanotubes prepared in CO2 continuous wave laser ablation at room temperature. Physica B: Condensed Matter , 2003, 325: 224–229
[18] Marchiori R, Braga W F, Mantelli M B H, . Analytical solution to predict laser ablation rate in a graphitic target. Journal of Materials Science , 2010, 45(6): 1495–1502
[19] Doorn S K, O’Connell M J, Zheng L X, . Raman spectral imaging of a carbon nanotube intramolecular junction. Physical Review Letters , 2005, 94(1): 016802 (4 pages)
[20] Piner R D, Zhu J, Xu F, . “Dip-Pen” nanolithography. Science , 1999, 283(5402): 661–663
[21] Lu J Q, Kopley T E, Moll N, . High-quality single-walled carbon nanotubes with small diameter, controlled density, and ordered locations using a polyferrocenylsilane block copolymer catalyst precursor. Chemistry of Materials , 2005, 17(9): 2227–2231
[22] Cubukcu E, Degirmenci F, Kocabas C, . Aligned carbon nanotubes as polarization-sensitive, molecular near-field detectors. Proceeding of the National Academy of Sciences of the United States of America , 2009, 106(8): 2495–2499
[23] Yao Y G, Li Q W, Zhang J, . Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nature Materials , 2007, 6(4): 283–286
[24] Hu P A, Xiao K, Liu Y Q, . Multiwall nanotubes with intramolecular junctions (CNx/C): Preparation, rectification, logic gates, and application. Applied Physics Letters , 2004, 84(24): 4932–4935
[25] Wei D C, Liu Y Q, Cao L C, . A new method to synthesize complicated multi-branched carbon nanotubes with controlled architecture and composition. Nano Letters , 2006, 6(2): 186–192
[26] Wei D C, Cao L C, Fu L, . A new technique for controllably producing branched or encapsulating nanostructures in a vapor–liquid–solid process. Advanced Materials , 2007, 19(3): 386–390
[27] Ma Y F, Wang B, Wu Y P, . The production of horizontally aligned single-walled carbon nanotubes. Carbon , 2011, 49(13): 4098–4110
[28] Ding L, Tselev A, Wang J, . Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Letters , 2009, 9(2): 800–805
[29] Ishigami N, Ago H, Imamoto K, . Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire. Journal of the American Chemical Society , 2008, 130(30): 9918–9924
[30] Jin Z, Chu H B, Wang J Y, . Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Letters , 2007, 7(7): 2073–2079
[31] Huang S M, Cai X Y, Liu J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. Journal of the American Chemical Society , 2003, 125(19): 5636–5637
[32] Hong B H, Lee J Y, Beetz T, . Quasi-continuous growth of ultralong carbon nanotube arrays. Journal of the American Chemical Society , 2005, 127(44): 15336–15337
[33] Giepmans B N G, Adams S R, Ellisman M H, . The fluorescent toolbox for assessing protein location and function. Science , 2006, 312(5771): 217–224
[34] Weijer C J. Visualizing signals moving in cells. Science , 2003, 300(5616): 96–100
[35] Pease A C, Solas D, Sullivan E J, . Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proceeding of the National Academy of Sciences of the United States of America , 1994, 91(11): 5022–5026
[36] Huang C C, Chang H T. Selective gold-nanoparticle-based “turn-on” fluorescent sensors for detection of mercury(II) in aqueous solution. Analytical Chemistry , 2006, 78(24): 8332–8338
[37] Herr J K, Smith J E, Medley C D, . Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Analytical Chemistry , 2006, 78(9): 2918–2924
[38] Gerion D, Chen F, Kannan B, . Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Analytical Chemistry , 2003, 75(18): 4766–4772
[39] Charlier J-C, Blase X, Roche S. Electronic and transport properties of nanotubes. Reviews of Modern Physics , 2007, 79(2): 677–732
[40] Shim M, Javey A, Shi Kam N W, . Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. Journal of the American Chemical Society , 2001, 123(46): 11512–11513
[41] Chen R J, Bangsaruntip S, Drouvalakis K A, . Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proceeding of the National Academy of Sciences of the United States of America , 2003, 100(9): 4984–4989
[42] Ajayan P M. Nanotubes from carbon. Chemical Reviews , 1999, 99(7): 1787–1800
[43] Zheng M, Jagota A, Semke E D, . DNA-assisted dispersion and separation of carbon nanotubes. Nature Materials , 2003, 2(5): 338–342
[44] Williams K A, Veenhuizen P T M, de la Torre B G, . Nanotechnology: carbon nanotubes with DNA recognition. Nature , 2002, 420(6917): 761–763
[45] Star A, Tu E, Niemann J, . Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proceeding of the National Academy of Sciences of the United States of America , 2006, 103(4): 921–926
[46] Gui E, Li L, Lee P S, . Electrical detection of hybridization and threading intercalation of deoxyribonucleic acid using carbon nanotube network field-effect transistors. Applied Physics Letters , 2006, 89(23): 232104 (3 pages)
[47] Gui E L, Li L J, Zhang K, . DNA sensing by field-effect transistors based on networks of carbon nanotubes. Journal of the American Chemical Society , 2007, 129(46): 14427–14432
[48] Dong X, Lau C M, Lohani A, . Electrical detection of femtomolar DNA via gold-nanoparticle enhancement in carbon-nanotube-network field-effect transistors. Advanced Materials , 2008, 20(12): 2389–2393
[49] Martínez M T, Tseng Y C, Ormategui N, . Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Letters , 2009, 9(2): 530–536
[50] Dastagir T, Forzani E S, Zhang R, . Electrical detection of hepatitis C virus RNA on single wall carbon nanotube-field effect transistors. Analyst , 2007, 132(8): 738–740
[51] Balavoine F, Schultz P, Richard C, . Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors. Angewandte Chemie International Edition , 1999, 38(13–14): 1912–1915
[52] Kam N W S, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. Journal of the American Chemical Society , 2005, 127(16): 6021–6026
[53] Jiang K, Eitan A, Schadler L S, . Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes. Nano Letters , 2003, 3(3): 275–277
[54] Niyogi S, Hamon M A, Hu H, . Chemistry of single-walled carbon nanotubes. Accounts of Chemical Research , 2002, 35(12): 1105–1113
[55] Chen R J, Zhang Y, Wang D, . Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. Journal of the American Chemical Society , 2001, 123(16): 3838–3839
[56] Holmlin R E, Chen X, Chapman R G, . Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir , 2001, 17(9): 2841–2850
[57] Besteman K, Lee J-O, Wiertz F G M, . Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Letters , 2003, 3(6): 727–730
[58] Hu P A, Fasoli A, Park J, . Self-assembled nanotube field-effect transistors for label-free protein biosensors. Journal of Applied Physics , 2008, 104(7): 074310 (5 pages)
[59] Star A, Gabriel J-C P, Bradley K, . Electronic detection of specific protein binding using nanotube FET devices. Nano Letters , 2003, 3(4): 459–463
[60] Boussaad S, Tao N J, Zhang R, . In situ detection of cytochrome c adsorption with single walled carbon nanotube device. Chemical Communications , 2003, (13): 1502–1503
[61] Artyukhin A B, Stadermann M, Friddle R W, . Controlled electrostatic gating of carbon nanotube FET devices. Nano Letters , 2006, 6(9): 2080–2085
[62] Gui E L, Li L J, Zhang K, . DNA sensing by field-effect transistors based on networks of carbon nanotubes. Journal of the American Chemical Society , 2007, 129(46): 14427–14432
[63] Chen R J, Choi H C, Bangsaruntip S, . An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. Journal of the American Chemical Society , 2004, 126(5): 1563–1568
[64] Byon H R, Choi H C. Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. Journal of the American Chemical Society , 2006, 128(7): 2188–2189
[65] Tang X, Bansaruntip S, Nakayama N, . Carbon nanotube DNA sensor and sensing mechanism. Nano Letters , 2006, 6(8): 1632–1636
[66] Hecht D S, Ramirez R J A, Briman M, . Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. Nano Letters , 2006, 6(9): 2031–2036
[67] Heller I, Janssens A M, M?nnik J, . Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Letters , 2008, 8(2): 591–595
[68] Geim A K, Novoselov K S. The rise of graphene. Nature Materials , 2007, 6(3): 183–191
[69] Berger C, Song Z, Li X, . Electronic confinement and coherence in patterned epitaxial graphene. Science , 2006, 312(5777): 1191–1196
[70] Emtsev K V, Bostwick A, Horn K, . Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials , 2009, 8(3): 203–207
[71] Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium. Nature Materials , 2008, 7(5): 406–411
[72] Robinson J T, Perkins F K, Snow E S, . Reduced graphene oxide molecular sensors. Nano Letters , 2008, 8(10): 3137–3140
[73] Lu C H, Yang H H, Zhu C L, . A graphene platform for sensing biomolecules. Angewandte Chemie International Edition , 2009, 48(26): 4785–4787
[74] Ohno Y, Maehashi K, Matsumoto K. Label-free biosensors based on aptamer-modified graphene field-effect transistors. Journal of the American Chemical Society , 2010, 132(51): 18012–18013
[75] Brodie B C. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London , 1859, 149: 249–259
[76] Staudenmaier L. Verfahren zur darstellung der graphitsaure. Berichte der Deutschen Chemischen Gesellschaft , 1898, 31(2): 1481–1487 (in German)
[77] Hamdi H. Zur Kenntnis der kolloidchemischen Eigenschaften des Humus Dispersoidchemische Beobachtungenan Graphitoxyd. Fortschrittsberichte uber Kolloide und Polymere , 1943, 54(10–12): 554–634 (in German)
[78] Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society , 1958, 80(6): 1339–1339
[79] Niyogi S, Bekyarova E, Itkis M E, . Solution properties of graphite and graphene. Journal of the American Chemical Society , 2006, 128(24): 7720–7721
[80] Hirata M, Gotou T, Horiuchi S, . Thin-film particles of graphite oxide: high-yield synthesis and flexibility of the particles. Carbon , 2004, 42(14): 2929–2937
[81] Kovtyukhova N I, Ollivier P J, Martin B R, . Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials , 1999, 11(3): 771–778
[82] Lu J, Yang J X, Wang J, . One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano , 2009, 3(8): 2367–2375
[83] He H, Klinowski J, Forster M, . A new structural model for graphite oxide. Chemical Physics Letters , 1998, 287(1–2): 53–56
[84] Tung V C, Allen M J, Yang Y, . High-throughput solution processing of large-scale graphene. Nature Nanotechnology , 2009, 4(1): 25–29
[85] Stankovich S, Dikin D A, Dommett G H B, . Graphene-based composite materials. Nature , 2006, 442(7100): 282–286
[86] Wang G, Yang J, Park J, . Facile synthesis and characterization of graphene nanosheets. Journal of Physical Chemistry C , 2008, 112(22): 8192–8195
[87] Si Y, Samulski E T. Synthesis of water soluble graphene. Nano Letters , 2008, 8(6): 1679–1682
[88] Zhang J, Hu P A, Zhang R F, . Soft-lithographic processed soluble micropatterns of reduced graphene oxide for wafer-scale thin film transistors and gas sensors. Journal of Materials Chemistry , 2012, 22(2): 714–718
[89] Banerjee B C, Hirt T J, Walker P L. Pyrolytic carbon formation from carbon suboxide. Nature , 1961, 192(4801): 450–451
[90] Himpsel F J, Christmann K, Heimann P, . Adsorbate band dispersions for C on Ru(0001). Surface Science Letters , 1982, 115(3): L159–L164
[91] Kholin A, Rut’kov E V, Tontegode A Y. Soviet Physics- Solid State, 1985, 27: 155
[92] Hamilton J C, Blakely J M. Carbon segregation to single crystal surfaces of Pt, Pd and Co. Surface Science , 1980, 91(1): 199–217
[93] Gall N R, Mikhallov S N, Rut’kov E V, . Soviet Physics- Solid State, 1985, 27: 1410
[94] Reina A, Jia X T, Ho J, . Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters , 2009, 9(1): 30–35
[95] Kim K S, Zhao Y, Jang H, . Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature , 2009, 457(7230): 706–710
[96] Li X S, Cai W W, An J H, . Large-area synthesis of high-quality and uniform graphene films on copper foils. Science , 2009, 324(5932): 1312–1314
[97] Li X S, Magnuson C W, Venugopal A, . Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Letters , 2010, 10(11): 4328–4334
[98] Yu Q K, Jauregui L A, Wu W, . Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Materials , 2011, 10(6): 443–449
[99] Chen J Y, Wen Y G, Guo Y L, . Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. Journal of the American Chemical Society , 2011, 133(44): 17548–17551
[100] Sun Z Z, Yan Z, Yao J, . Growth of graphene from solid carbon sources. Nature , 2010, 468(7323): 549–552
[101] Novoselov K S, Jiang D, Schedin F, . Two dimensional atomic crystals. Proceeding of the National Academy of Sciences of the United States of America , 2005, 102(30): 10451–10453
[102] Dresselhaus M S, Dresselhaus G. Intercalation compounds of graphite. Advances in Physics , 2002, 51(1): 1–186
[103] Das A, Pisana S, Chakraborty B, . Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology , 2008, 3(4): 210–215
[104] Ang P K, Chen W, Wee A T S, . Solution-gated epitaxial graphene as pH sensor. Journal of the American Chemical Society , 2008, 130(44): 14392–14393
[105] Varghese N, Mogera U, Govindaraj A, . Binding of DNA nucleobases and nucleosides with graphene. ChemPhysChem , 2009, 10(1): 206–210
[106] Ohno Y, Maehashi K, Yamashiro Y, . Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Letters , 2009, 9(9): 3318–3322
[107] Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Letters , 2008, 8(12): 4469–4476
[108] Dong X C, Shi Y M, Huang W, . Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Advanced Materials , 2010, 22(14): 1649–1653
[109] Stine R, Robinson J T, Sheehan P E, . Real-time DNA detection using reduced graphene oxide field effect transistors. Advanced Materials , 2010, 22(46): 5297–5300
AI Summary AI Mindmap
PDF(1496 KB)

Accesses

Citations

Detail

Sections
Recommended

/