[1] Kroto H W, Heath J R, O’Brien S C,
. C
60: Buckminsterfullerene.
Nature , 1985, 318(6042): 162–163
[2] Iijima S. Helical microtubules of graphitic carbon.
Nature , 1991, 354(6348): 56–58
[3] Novoselov K S, Geim A K, Morozov S V,
. Electric field effect in atomically thin carbon films.
Science , 2004, 306(5696): 666–669
[4] Jorio A, Dresselhaus G, Dresselhaus M S. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure Properties and Applications.
Berlin, Heidelberg:
Springer-Verlag Berlin/Heidelberg, 2008
[5] de Heer W A, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source.
Science , 1995, 270(5239): 1179–1180
[6] Liu C, Fan Y Y, Liu M,
. Hydrogen storage in single-walled carbon nanotubes at room temperature.
Science , 1999, 286(5442): 1127–1129
[7] Zandonella C. Is it all just a pipe dream?
Nature , 2001, 410(6830): 734–735
[8] Wu Z C, Chen Z H, Du X,
. Transparent, conductive carbon nanotube films.
Science , 2004, 305(5688): 1273–1276
[9] Zhang D H, Ryu K, Liu X L,
. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes.
Nano Letters , 2006, 6(9): 1880–1886
[10] Zhang M, Fang S L, Zakhidov A A,
. Strong, transparent, multifunctional, carbon nanotube sheets.
Science , 2005, 309(5738): 1215–1219
[11] Wei J Q, Zhu H W, Wu D H,
. Carbon nanotube filaments in household light bulbs.
Applied Physics Letters , 2004, 84(24): 4869–4871
[12] Pushparaj V L, Shaijumon M M, Kumar A,
. Flexible energy storage devices based on nanocomposite paper.
Proceeding of the National Academy of Sciences of the United States of America , 2007, 104(34): 13574–13577
[13] Kim S N, Rusling J F, Papadimitrakopoulos F. Carbon nanotubes for electronic and electrochemical detection of biomolecules.
Advanced Materials , 2007, 19(20): 3214–3228
[14] Sugai T, Yoshida H, Shimada T,
. New synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc dischargs.
Nano Letters , 2003, 3(6): 769–773
[15] Montoro L A, Lofrano R C Z, Rosolen J M. Synthesis of single-walled and multi-walled carbon nanotubes by arc-water method.
Carbon , 2005, 43(1): 200–203
[16] Bolshakov A P, Uglov S A, Saveliev A V,
. A novel CW laser-power method of carbon single-wall nanotubes production.
Diamond and Related Materials , 2002, 11(3–6): 927–930
[17] Zhang H Y, Ding Y, Wu C Y,
. The effect of laser power on the formation of carbon nanotubes prepared in CO
2 continuous wave laser ablation at room temperature.
Physica B: Condensed Matter , 2003, 325: 224–229
[18] Marchiori R, Braga W F, Mantelli M B H,
. Analytical solution to predict laser ablation rate in a graphitic target.
Journal of Materials Science , 2010, 45(6): 1495–1502
[19] Doorn S K, O’Connell M J, Zheng L X,
. Raman spectral imaging of a carbon nanotube intramolecular junction.
Physical Review Letters , 2005, 94(1): 016802 (4 pages)
[20] Piner R D, Zhu J, Xu F,
. “Dip-Pen” nanolithography.
Science , 1999, 283(5402): 661–663
[21] Lu J Q, Kopley T E, Moll N,
. High-quality single-walled carbon nanotubes with small diameter, controlled density, and ordered locations using a polyferrocenylsilane block copolymer catalyst precursor.
Chemistry of Materials , 2005, 17(9): 2227–2231
[22] Cubukcu E, Degirmenci F, Kocabas C,
. Aligned carbon nanotubes as polarization-sensitive, molecular near-field detectors.
Proceeding of the National Academy of Sciences of the United States of America , 2009, 106(8): 2495–2499
[23] Yao Y G, Li Q W, Zhang J,
. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions.
Nature Materials , 2007, 6(4): 283–286
[24] Hu P A, Xiao K, Liu Y Q,
. Multiwall nanotubes with intramolecular junctions (CN
x/C): Preparation, rectification, logic gates, and application.
Applied Physics Letters , 2004, 84(24): 4932–4935
[25] Wei D C, Liu Y Q, Cao L C,
. A new method to synthesize complicated multi-branched carbon nanotubes with controlled architecture and composition.
Nano Letters , 2006, 6(2): 186–192
[26] Wei D C, Cao L C, Fu L,
. A new technique for controllably producing branched or encapsulating nanostructures in a vapor–liquid–solid process.
Advanced Materials , 2007, 19(3): 386–390
[27] Ma Y F, Wang B, Wu Y P,
. The production of horizontally aligned single-walled carbon nanotubes.
Carbon , 2011, 49(13): 4098–4110
[28] Ding L, Tselev A, Wang J,
. Selective growth of well-aligned semiconducting single-walled carbon nanotubes.
Nano Letters , 2009, 9(2): 800–805
[29] Ishigami N, Ago H, Imamoto K,
. Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire.
Journal of the American Chemical Society , 2008, 130(30): 9918–9924
[30] Jin Z, Chu H B, Wang J Y,
. Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays.
Nano Letters , 2007, 7(7): 2073–2079
[31] Huang S M, Cai X Y, Liu J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates.
Journal of the American Chemical Society , 2003, 125(19): 5636–5637
[32] Hong B H, Lee J Y, Beetz T,
. Quasi-continuous growth of ultralong carbon nanotube arrays.
Journal of the American Chemical Society , 2005, 127(44): 15336–15337
[33] Giepmans B N G, Adams S R, Ellisman M H,
. The fluorescent toolbox for assessing protein location and function.
Science , 2006, 312(5771): 217–224
[34] Weijer C J. Visualizing signals moving in cells.
Science , 2003, 300(5616): 96–100
[35] Pease A C, Solas D, Sullivan E J,
. Light-generated oligonucleotide arrays for rapid DNA sequence analysis.
Proceeding of the National Academy of Sciences of the United States of America , 1994, 91(11): 5022–5026
[36] Huang C C, Chang H T. Selective gold-nanoparticle-based “turn-on” fluorescent sensors for detection of mercury(II) in aqueous solution.
Analytical Chemistry , 2006, 78(24): 8332–8338
[37] Herr J K, Smith J E, Medley C D,
. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells.
Analytical Chemistry , 2006, 78(9): 2918–2924
[38] Gerion D, Chen F, Kannan B,
. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays.
Analytical Chemistry , 2003, 75(18): 4766–4772
[39] Charlier J-C, Blase X, Roche S. Electronic and transport properties of nanotubes.
Reviews of Modern Physics , 2007, 79(2): 677–732
[40] Shim M, Javey A, Shi Kam N W,
. Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors.
Journal of the American Chemical Society , 2001, 123(46): 11512–11513
[41] Chen R J, Bangsaruntip S, Drouvalakis K A,
. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors.
Proceeding of the National Academy of Sciences of the United States of America , 2003, 100(9): 4984–4989
[42] Ajayan P M. Nanotubes from carbon.
Chemical Reviews , 1999, 99(7): 1787–1800
[43] Zheng M, Jagota A, Semke E D,
. DNA-assisted dispersion and separation of carbon nanotubes.
Nature Materials , 2003, 2(5): 338–342
[44] Williams K A, Veenhuizen P T M, de la Torre B G,
. Nanotechnology: carbon nanotubes with DNA recognition.
Nature , 2002, 420(6917): 761–763
[45] Star A, Tu E, Niemann J,
. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors.
Proceeding of the National Academy of Sciences of the United States of America , 2006, 103(4): 921–926
[46] Gui E, Li L, Lee P S,
. Electrical detection of hybridization and threading intercalation of deoxyribonucleic acid using carbon nanotube network field-effect transistors.
Applied Physics Letters , 2006, 89(23): 232104 (3 pages)
[47] Gui E L, Li L J, Zhang K,
. DNA sensing by field-effect transistors based on networks of carbon nanotubes.
Journal of the American Chemical Society , 2007, 129(46): 14427–14432
[48] Dong X, Lau C M, Lohani A,
. Electrical detection of femtomolar DNA via gold-nanoparticle enhancement in carbon-nanotube-network field-effect transistors.
Advanced Materials , 2008, 20(12): 2389–2393
[49] Martínez M T, Tseng Y C, Ormategui N,
. Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors.
Nano Letters , 2009, 9(2): 530–536
[50] Dastagir T, Forzani E S, Zhang R,
. Electrical detection of hepatitis C virus RNA on single wall carbon nanotube-field effect transistors.
Analyst , 2007, 132(8): 738–740
[51] Balavoine F, Schultz P, Richard C,
. Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors.
Angewandte Chemie International Edition , 1999, 38(13–14): 1912–1915
[52] Kam N W S, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality.
Journal of the American Chemical Society , 2005, 127(16): 6021–6026
[53] Jiang K, Eitan A, Schadler L S,
. Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes.
Nano Letters , 2003, 3(3): 275–277
[54] Niyogi S, Hamon M A, Hu H,
. Chemistry of single-walled carbon nanotubes.
Accounts of Chemical Research , 2002, 35(12): 1105–1113
[55] Chen R J, Zhang Y, Wang D,
. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization.
Journal of the American Chemical Society , 2001, 123(16): 3838–3839
[56] Holmlin R E, Chen X, Chapman R G,
. Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer.
Langmuir , 2001, 17(9): 2841–2850
[57] Besteman K, Lee J-O, Wiertz F G M,
. Enzyme-coated carbon nanotubes as single-molecule biosensors.
Nano Letters , 2003, 3(6): 727–730
[58] Hu P A, Fasoli A, Park J,
. Self-assembled nanotube field-effect transistors for label-free protein biosensors.
Journal of Applied Physics , 2008, 104(7): 074310 (5 pages)
[59] Star A, Gabriel J-C P, Bradley K,
. Electronic detection of specific protein binding using nanotube FET devices.
Nano Letters , 2003, 3(4): 459–463
[60] Boussaad S, Tao N J, Zhang R,
.
In situ detection of cytochrome c adsorption with single walled carbon nanotube device.
Chemical Communications , 2003, (13): 1502–1503
[61] Artyukhin A B, Stadermann M, Friddle R W,
. Controlled electrostatic gating of carbon nanotube FET devices.
Nano Letters , 2006, 6(9): 2080–2085
[62] Gui E L, Li L J, Zhang K,
. DNA sensing by field-effect transistors based on networks of carbon nanotubes.
Journal of the American Chemical Society , 2007, 129(46): 14427–14432
[63] Chen R J, Choi H C, Bangsaruntip S,
. An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices.
Journal of the American Chemical Society , 2004, 126(5): 1563–1568
[64] Byon H R, Choi H C. Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications.
Journal of the American Chemical Society , 2006, 128(7): 2188–2189
[65] Tang X, Bansaruntip S, Nakayama N,
. Carbon nanotube DNA sensor and sensing mechanism.
Nano Letters , 2006, 6(8): 1632–1636
[66] Hecht D S, Ramirez R J A, Briman M,
. Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor.
Nano Letters , 2006, 6(9): 2031–2036
[67] Heller I, Janssens A M, M?nnik J,
. Identifying the mechanism of biosensing with carbon nanotube transistors.
Nano Letters , 2008, 8(2): 591–595
[68] Geim A K, Novoselov K S. The rise of graphene.
Nature Materials , 2007, 6(3): 183–191
[69] Berger C, Song Z, Li X,
. Electronic confinement and coherence in patterned epitaxial graphene.
Science , 2006, 312(5777): 1191–1196
[70] Emtsev K V, Bostwick A, Horn K,
. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide.
Nature Materials , 2009, 8(3): 203–207
[71] Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium.
Nature Materials , 2008, 7(5): 406–411
[72] Robinson J T, Perkins F K, Snow E S,
. Reduced graphene oxide molecular sensors.
Nano Letters , 2008, 8(10): 3137–3140
[73] Lu C H, Yang H H, Zhu C L,
. A graphene platform for sensing biomolecules.
Angewandte Chemie International Edition , 2009, 48(26): 4785–4787
[74] Ohno Y, Maehashi K, Matsumoto K. Label-free biosensors based on aptamer-modified graphene field-effect transistors.
Journal of the American Chemical Society , 2010, 132(51): 18012–18013
[75] Brodie B C. On the atomic weight of graphite.
Philosophical Transactions of the Royal Society of London , 1859, 149: 249–259
[76] Staudenmaier L. Verfahren zur darstellung der graphitsaure.
Berichte der Deutschen Chemischen Gesellschaft , 1898, 31(2): 1481–1487 (in German)
[77] Hamdi H. Zur Kenntnis der kolloidchemischen Eigenschaften des Humus Dispersoidchemische Beobachtungenan Graphitoxyd.
Fortschrittsberichte uber Kolloide und Polymere , 1943, 54(10–12): 554–634 (in German)
[78] Hummers W S, Offeman R E. Preparation of graphitic oxide.
Journal of the American Chemical Society , 1958, 80(6): 1339–1339
[79] Niyogi S, Bekyarova E, Itkis M E,
. Solution properties of graphite and graphene.
Journal of the American Chemical Society , 2006, 128(24): 7720–7721
[80] Hirata M, Gotou T, Horiuchi S,
. Thin-film particles of graphite oxide: high-yield synthesis and flexibility of the particles.
Carbon , 2004, 42(14): 2929–2937
[81] Kovtyukhova N I, Ollivier P J, Martin B R,
. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations.
Chemistry of Materials , 1999, 11(3): 771–778
[82] Lu J, Yang J X, Wang J,
. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids.
ACS Nano , 2009, 3(8): 2367–2375
[83] He H, Klinowski J, Forster M,
. A new structural model for graphite oxide.
Chemical Physics Letters , 1998, 287(1–2): 53–56
[84] Tung V C, Allen M J, Yang Y,
. High-throughput solution processing of large-scale graphene.
Nature Nanotechnology , 2009, 4(1): 25–29
[85] Stankovich S, Dikin D A, Dommett G H B,
. Graphene-based composite materials.
Nature , 2006, 442(7100): 282–286
[86] Wang G, Yang J, Park J,
. Facile synthesis and characterization of graphene nanosheets.
Journal of Physical Chemistry C , 2008, 112(22): 8192–8195
[87] Si Y, Samulski E T. Synthesis of water soluble graphene.
Nano Letters , 2008, 8(6): 1679–1682
[88] Zhang J, Hu P A, Zhang R F,
. Soft-lithographic processed soluble micropatterns of reduced graphene oxide for wafer-scale thin film transistors and gas sensors.
Journal of Materials Chemistry , 2012, 22(2): 714–718
[89] Banerjee B C, Hirt T J, Walker P L. Pyrolytic carbon formation from carbon suboxide.
Nature , 1961, 192(4801): 450–451
[90] Himpsel F J, Christmann K, Heimann P,
. Adsorbate band dispersions for C on Ru(0001).
Surface Science Letters , 1982, 115(3): L159–L164
[91] Kholin A, Rut’kov E V, Tontegode A Y. Soviet Physics- Solid State, 1985, 27: 155
[92] Hamilton J C, Blakely J M. Carbon segregation to single crystal surfaces of Pt, Pd and Co.
Surface Science , 1980, 91(1): 199–217
[93] Gall N R, Mikhallov S N, Rut’kov E V,
. Soviet Physics- Solid State, 1985, 27: 1410
[94] Reina A, Jia X T, Ho J,
. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition.
Nano Letters , 2009, 9(1): 30–35
[95] Kim K S, Zhao Y, Jang H,
. Large-scale pattern growth of graphene films for stretchable transparent electrodes.
Nature , 2009, 457(7230): 706–710
[96] Li X S, Cai W W, An J H,
. Large-area synthesis of high-quality and uniform graphene films on copper foils.
Science , 2009, 324(5932): 1312–1314
[97] Li X S, Magnuson C W, Venugopal A,
. Graphene films with large domain size by a two-step chemical vapor deposition process.
Nano Letters , 2010, 10(11): 4328–4334
[98] Yu Q K, Jauregui L A, Wu W,
. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition.
Nature Materials , 2011, 10(6): 443–449
[99] Chen J Y, Wen Y G, Guo Y L,
. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates.
Journal of the American Chemical Society , 2011, 133(44): 17548–17551
[100] Sun Z Z, Yan Z, Yao J,
. Growth of graphene from solid carbon sources.
Nature , 2010, 468(7323): 549–552
[101] Novoselov K S, Jiang D, Schedin F,
. Two dimensional atomic crystals.
Proceeding of the National Academy of Sciences of the United States of America , 2005, 102(30): 10451–10453
[102] Dresselhaus M S, Dresselhaus G. Intercalation compounds of graphite.
Advances in Physics , 2002, 51(1): 1–186
[103] Das A, Pisana S, Chakraborty B,
. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor.
Nature Nanotechnology , 2008, 3(4): 210–215
[104] Ang P K, Chen W, Wee A T S,
. Solution-gated epitaxial graphene as pH sensor.
Journal of the American Chemical Society , 2008, 130(44): 14392–14393
[105] Varghese N, Mogera U, Govindaraj A,
. Binding of DNA nucleobases and nucleosides with graphene.
ChemPhysChem , 2009, 10(1): 206–210
[106] Ohno Y, Maehashi K, Yamashiro Y,
. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption.
Nano Letters , 2009, 9(9): 3318–3322
[107] Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents.
Nano Letters , 2008, 8(12): 4469–4476
[108] Dong X C, Shi Y M, Huang W,
. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets.
Advanced Materials , 2010, 22(14): 1649–1653
[109] Stine R, Robinson J T, Sheehan P E,
. Real-time DNA detection using reduced graphene oxide field effect transistors.
Advanced Materials , 2010, 22(46): 5297–5300