Atomistic study of anisotropic effect on two-dimensional dynamic crack

Guo-Wu REN(), Tie-Gang TANG, Qin-Zhong LI

PDF(911 KB)
PDF(911 KB)
Front. Mater. Sci. ›› 2012, Vol. 6 ›› Issue (1) : 87-96. DOI: 10.1007/s11706-012-0159-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Atomistic study of anisotropic effect on two-dimensional dynamic crack

  • Guo-Wu REN(), Tie-Gang TANG, Qin-Zhong LI
Author information +
History +

Abstract

We adopt molecular dynamics (MD) method to extensively study the dynamical process during the crack propagation along two crystallographic directions in the two-dimensional close-packed system. The dependence of crack initiation time on the loading rates is investigated in comparison with continuum analysis. By calculating the displacement and stress field, the results are in excellent agreement with the asymptotic continuum solution of low-speed propagating crack. Moreover, the crack-tip velocity is numerically attained and associated with the instability of crack surface morphology, which results from the strongly anisotropic behavior. Further analysis remarkably observes the crack-branching healing process in that the dislocation emission absorbs the concentrated strain energy of crack tip.

Keywords

crack / anisotropic effect / molecular dynamics (MD)

Cite this article

Download citation ▾
Guo-Wu REN, Tie-Gang TANG, Qin-Zhong LI. Atomistic study of anisotropic effect on two-dimensional dynamic crack. Front Mater Sci, 2012, 6(1): 87‒96 https://doi.org/10.1007/s11706-012-0159-3

References

[1] Freund L B. Dynamic Fracture Mechanics. Cambridge: Cambridge University Press, 1990
[2] Fineberg J, Marder M. Instability in dynamic fracture. Physics Reports , 1999, 313(1-2): 1–108
[3] Bouchbinder E, Fineberg J, Marder M. Dynamics of simple cracks. Annual Review of Condensed Matter Physics , 2010, 1(1): 371–395
[4] Fineberg J, Gross S P, Marder M, . Instability in dynamic fracture. Physical Review Letters , 1991, 67(4): 457–460
[5] Sharon E, Fineberg J. Confirming the continuum theory of dynamic brittle fracture for fast cracks. Nature , 1999, 397(6717): 333–335
[6] Abraham F F, Brodbeck D, Rafey R A, . Instability dynamics of fracture: A computer simulation investigation. Physical Review Letters , 1994, 73(2): 272–275
[7] Ariza M P, Ortiz M, Serrano R. Long-term dynamic stability of discrete dislocation in graphene at finite temperature. International Journal of Fracture , 2010, 166(1-2): 215–223
[8] Buehler M J, Abraham F F, Gao H. Hyperelasticity governs dynamic fracture at a critical length scale. Nature , 2003, 426(6963): 141–146
[9] George A, Michot G. Dislocation loops at crack tips: nucleation and growth - an experimental study in silicon. Materials Science and Engineering A , 1993, 164(1-2): 118–134
[10] Ebrahimi F, Kalwani L. Fracture anisotropy in silicon single crystal. Materials Science and Engineering A , 1999, 268(1-2): 116–126
[11] Riedle J, Gumbsch P, Fischmeister H F. Cleavage anisotropy in tungsten single crystals. Physical Review Letters , 1996, 76(19): 3594–3597
[12] Hakim V, Karma A. Crack path prediction in anisotropic brittle materials. Physical Review Letters , 2005, 95(23): 235501 (4 pages)
[13] Khan S M A, Khraisheh M K. The anisotropic R-criterion for crack initiation. Engineering Fracture Mechanics , 2008, 75(14): 4257–4278
[14] Holland D, Marder M. Ideal brittle fracture of silicon studied with molecular dynamics. Physical Review Letters , 1998, 80(4): 746–749
[15] Hauch J A, Holland D, Marder M P, . Dynamic fracture in single crystal silicon. Physical Review Letters , 1999, 82(19): 3823–3826
[16] Swadener J G, Baskes M I, Nastasi M. Molecular dynamics simulation of brittle fracture in silicon. Physical Review Letters , 2002, 89(8): 085503 (4 pages)
[17] Sen D, Thaulow C, Schieffer S V, . Atomistic study of crack-tip cleavage to dislocation emission transition in silicon single crystals. Physical Review Letters , 2010, 104(23): 235502 (4 pages)
[18] Dauchot O, Karmakar S, Procaccia I, . Athermal brittle-to-ductile transition in amorphous solids. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2011, 84(4): 046105 (5 pages)
[19] Atrash F, Hashibon A, Gumbsch P, . Phonon emission induced dynamic fracture phenomena. Physical Review Letters , 2011, 106(8): 085502 (4 pages)
[20] Atrash F, Sherman D. Evaluation of the thermal phonon emission in dynamic fracture of brittle crystals. Physical Review B: Condensed Matter and Materials Physics , 2011, 84(22): 224307 (10 pages)
[21] Szelestey P, Heino P, Kertesz J, . Effect of anisotropy on the instability of crack propagation. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics , 2000, 61(4): 3378–3383
[22] Kermode J R, Albaret T, Sherman D, . Low speed fracture instabilities in a brittle crystal. Nature , 2008, 455(7217): 1224–1227
[23] Kohlhoff S, Gumbsch P, Fischmeister H F. Crack propagation in bcc crystals studied with a combined finite-element and atomistic model. Philosophical Magazine A , 1991, 64(4): 851–878
[24] Nair A K, Warner D H, Hennig R G. Coupled quantum-continuum analysis of crack tip processed in aluminum. Journal of the Mechanics and Physics of Solids , 2011, 59(12): 2476–2487
[25] Abraham F F. Dynamics of brittle fracture with variable elasticity. Physical Review Letters , 1996, 77(5): 869–872
[26] Holian B L, Ravelo R. Fracture simulations using large-scale molecular dynamics. Physical Review B: Condensed Matter and Materials Physics , 1995, 51(17): 11275–11288
[27] Wagner N J, Holian B L, Voter A F. Molecular-dynamics simulations of two-dimensional materials at high strain rates. Physical Review A. , 1992, 45(12): 8457–8470
[28] Ravi-Chandar K, Knauss W G. An experimental investigation into dynamic fracture: I Crack initiation and arrest. International Journal of Fracture , 1984, 25(4): 247–262
[29] Liu C, Knauss W G, Rosakis A J. Loading rates and the dynamic initiation toughness in brittle solids. International Journal of Fracture , 1998, 90(1-2): 103–118
[30] Gao H, Huang Y, Abraham F F. Continuum and atomistic studies of intersonic crack propagation. Journal of the Mechanics and Physics of Solids , 2001, 49(9): 2113–2132
[31] Cotterell B, Rice J R. Slightly curved or kinked cracks. International Journal of Fracture , 1980, 16(2): 155–169
[32] Li S, Gao K W, Qiao L J, . Molecular dynamics simulation of microcrack healing in copper. Computational Materials Science , 2001, 20(2): 143–150
AI Summary AI Mindmap
PDF(911 KB)

Accesses

Citations

Detail

Sections
Recommended

/