Electrical and non-linear optical studies on electrospun ZnO/BaO composite nanofibers

G. NIXON SAMUEL VIJAYAKUMAR1,2, M. RATHNAKUMARI2, P. SURESHKUMAR2()

PDF(644 KB)
PDF(644 KB)
Front. Mater. Sci. ›› 2012, Vol. 6 ›› Issue (1) : 69-78. DOI: 10.1007/s11706-012-0158-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Electrical and non-linear optical studies on electrospun ZnO/BaO composite nanofibers

  • G. NIXON SAMUEL VIJAYAKUMAR1,2, M. RATHNAKUMARI2, P. SURESHKUMAR2()
Author information +
History +

Abstract

Nanocapacitors and nonvolatile ferroelectric random access memories require nanoscale thin film coatings with ferroelectric properties. One dimensional ferroelectric nanofibers are used in ferroelectric memory devices owing to the fact that decrease of the dimensionality of the memory device elements will reduce the addressing and appreciably increase the storage capacity. Novel ZnO/BaO nanocomposite fibers exhibiting ferroelectric properties have been prepared in the form of non-woven mesh by electrospinning the sol derived from the sol-gel route. Thin cylindrical nanofibers of average diameter 100 nm have been obtained and their morphology is confirmed by SEM and AFM images. In the electrospinning process, the effect of the working distance on the fiber morphology was studied and it showed that working distance between 11 and 15 cm can produce fibers without beads and the decrease in working distance in this range increases the fiber diameter. Powder XRD was used to identify the phases and EDX analysis confirmed the presence of ZnO/BaO. Dielectric and non-linear optical properties have also been studied. The dielectric studies showed that ZnO/BaO composite nanofibers undergo a phase transition from ferroelectric to paraelectric at 323 K.

Keywords

nanocomposite fiber / sol-gel process / dielectric property / non-linear optical property / ferroelectric property

Cite this article

Download citation ▾
G. NIXON SAMUEL VIJAYAKUMAR, M. RATHNAKUMARI, P. SURESHKUMAR. Electrical and non-linear optical studies on electrospun ZnO/BaO composite nanofibers. Front Mater Sci, 2012, 6(1): 69‒78 https://doi.org/10.1007/s11706-012-0158-4

References

[1] Martin L W, Chu Y H, Ramesh R. Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Materials Science and Engineering R: Reports , 2010, 68(4-6): 89-133
[2] Uchino K. Ferroelectric Devices. New York: Marcel Decker, 2000
[3] Singh P, Singh S, Juneja J K, . Synthesis and ferroelectric properties of La-substituted PZFNT. Physica B: Condensed Matter , 2010, 405(1): 10-14
[4] Furukawa T, Takahashi Y, Nakajima T. Recent advances in ferroelectric polymer thin films for memory applications. Current Applied Physics , 2010, 10(1): e62-e67
[5] Yang S M, Yoon J G, Noh T W. Nanoscale studies of defect-mediated polarization switching dynamics in ferroelectric thin film capacitors. Current Applied Physics , 2011, 11(5): 1111-1125
[6] Wang Q-M, Cross L E. Tip deflection and blocking force of soft PZT-based cantilever RAINBOW actuators. Journal of the American Ceramic Society , 1999, 82(1): 103-110
[7] Uchino K. Materials issues in design and performance of piezoelectric actuators: an overview. Acta Materialia , 1998, 46(11): 3745-3753
[8] Gupta M K, Kumar B. Enhanced ferroelectric, dielectric and optical behavior in Li-doped ZnO nanorods. Journal of Alloys and Compounds , 2011, 509(23): L208-L212
[9] Gupta M K, Sinha N, Singh B K, . Synthesis of K-doped p-type ZnO nanorods along (100) for ferroelectric and dielectric applications. Materials Letters , 2010, 64(16): 1825-1828
[10] Zou C W, Shao L X, Guo L P, . Ferromagnetism and ferroelectric properties of (Mn, Li) co-doped ZnO nanorods arrays deposited by electrodeposition. Journal of Crystal Growth , 2011, 331(1): 44-48
[11] Islam M R, Podder J. Optical properties of ZnO nano fiber thin films grown by spray pyrolysis of zinc acetate precursor. Crystal Research and Technology , 2009, 44(3): 286-292
[12] Wang X S, Wu Z C, Webb J F, . Ferroelectric and dielectric properties of Li-doped ZnO thin films prepared by pulsed laser deposition. Applied Physics A: Materials Science & Processing , 2003, 77(3-4): 561-565
[13] Shibata T, Unno K, Makino E, . Characterization of sputtered ZnO thin film as sensor and actuator for diamond AFM probe. Sensors and Actuators A: Physical , 2002, 102(1-2): 106-113
[14] Comini E, Faglia G, Sberveglieri G, . Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters , 2002, 81(10): 1869-1872
[15] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science , 2001, 291(5510): 1947-1949
[16] Arnold M S, Avouris P, Pan Z W, . Field-effect transistors based on single semiconducting oxide nanobelts. Journal of Physical Chemistry B , 2003, 107(3): 659-663
[17] Hughes W L, Wang Z L. Nanobelts as nanocantilevers. Applied Physics Letters , 2003, 82(17): 2886-2888
[18] Bai X D, Gao P X, Wang Z L, . Dual-mode mechanical resonance of individual ZnO nanobelts. Applied Physics Letters , 2003, 82(26): 4806-4808
[19] Kim S-H, Lee J-S, Choi H-C, . The fabrication of thin-film bulk acoustic wave resonators employing a ZnO/Si composite diaphragm structure using porous silicon layer etching. IEEE Electron Device Letters , 1999, 20(3): 113-115
[20] Zhao M H, Wang Z L, Mao S X. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Letters , 2004, 4(4): 587-590
[21] Mathew S M, Umbarkar S B, Dongare M K. NOx storage behavior of BaO in different structural environment in NSR catalysts. Catalysis Communications , 2007, 8(8): 1178-1182
[22] Kumar P, Singh S, Juneja J K, . Ferroelectric properties of substituted barium titanate ceramics. Physica B: Condensed Matter , 2009, 404(12-13): 1752-1756
[23] Baji A, Mai Y W, Li Q, . Nanoscale investigation of ferroelectric properties in electrospun barium titanate/polyvinylidene fluoride composite fibers using piezoresponse force microscopy. Composites Science and Technology , 2011, 71(11): 1435-1440
[24] Xiao S H, Jiang W F, Luo K, . Structure and ferroelectric properties of barium titanate films synthesized by sol-gel method. Materials Chemistry and Physics , 2011, 127(3): 420-425
[25] Yuh J, Nino J C, Sigmund W M, . Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning. Materials Letters , 2005, 59(28): 3645-3647
[26] Nixon Samuel Vijayakumar G, Rathnakumari M, Sureshkumar P. Sol-gel synthesis of electrospun BaO/MnO nanocomposite fibers and their magnetic characterization. Crystal Research and Technology 10.1002/crat.201100375
[27] Siddheswaran R, Sankar R, Ramesh Babu M, . Preparation and characterization of ZnO nanofibers by electrospinning. Crystal Research and Technology , 2006, 41(5): 446-449
[28] Nixon Samuel Vijayakumar G, Devashankar S, Rathnakumari M, . Synthesis of electrospun ZnO/CuO nanocomposite fibers and their dielectric and non-linear optic studies. Journal of Alloys and Compounds , 2010, 507(1): 225-229
[29] Ma G P, Yang D Z, Chen B L, . Preparation and characterization of composite fibers from organic-soluble chitosan and poly-vinylpyrrolidone by electrospinning. Frontiers of Materials Science in China , 2010, 4(1): 64-69
[30] Chen L-J, Liao J-D, Chuang Y-J, . Polyvinylbutyral assisted synthesis and characterization of chalcopyrite quaternary semiconductor Cu(InxGa1-x)Se2 nanofibers by electrospinning route. Polymer , 2011, 52(1): 116-121
[31] Liu Y, Song Y, Chen D, . Sol-gel synthesis of polycrystalline ZnO and ZnS fibers. Journal of Dispersion Science and Technology , 2006, 27(8): 1191-1195
[32] Solovyov V F, Wiesmann H J, Suenaga M. A new method of HF control for synthesizing YBCO using the BaF2exsitu process. Superconductor Science and Technology , 2003, 16(11): L37-L39
[33] Chawla A K, Kaur D, Chandra R. Structural and optical characterization of ZnO nanocrystalline films deposited by sputtering. Optical Materials , 2007, 29(8): 995-998
[34] Barsoum M. Fundamentals of Ceramics. New York: Mc Graw-Hill, 1977, 543
[35] Justin Raj C, Krishnan S, Dinakaran S, . Growth, optical, mechanical, dielectric and theoretical studies on potassium pentaborate tetrahydrate (KB5O8·4H2O) single crystal by modified Sankaranarayanan-Ramasamy method. Journal of Materials Science & Technology , 2009, 25(6): 745-748
[36] Smyth C P. Dielectric Behavior and Structure. New York: Mc Graw-Hill, 1955
[37] Jose M, Sridhar B, Bhagavannarayana G, . Growth, structural, optical, thermal and mechanical studies of novel semi-organic NLO active single crystal: Heptaaqua-p-nitrophenolato strontium (I) nitrophenol. Journal of Crystal Growth , 2010, 312(6): 793-799
[38] Cyrac Peter A, Vimalan M, Sagayaraj P, . Thermal, optical, mechanical and electrical properties of a novel NLO active L-phenylalanine L-phenylalaninium perchlorate single crystals. Physica B: Physics of Condensed Matter , 2010, 405(1): 65-71
[39] Krishnan S, Justin Raj C, Robert R, . Mechanical, theoretical and dielectric studies on ferroelectric lithium ammonium sulphate (LAS) single crystals. Solid-State Electronics , 2008, 52(8): 1157-1161
[40] Chithambaram V, Jerome Das S, Arivudai Nambi R, . Effect of metallic dopants on potassium acid phthalate (KAP) single crystals. Physica B: Condensed Matter , 2010, 405(12): 2605-2609
[41] Mathe V L, Patankar K K, Lotke S D, . Structural, dielectric and transport properties of Pb(Mn0.5W0.5)O3. Bulletin of Materials Science , 2002, 25(4): 347-350
[42] Arora S K, Patel V, Amin B, . Dielectric behaviour of strontium tartrate single crystals. Bulletin of Materials Science , 2004, 27(2): 141-147
[43] Barber P, Balasubramanian S, Anguchamy Y, . Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials , 2009, 2(4): 1697-1733
[44] Mahajan R P, Patankar K K, Kothale M B, . Conductivity, dielectric behaviour and magnetoelectric effect in copper ferrite-barium titanate composites. Bulletin of Materials Science , 2000, 23(4): 273-279
[45] Jonscher A K. The ‘universal’ dielectric response. Nature , 1977, 267(5613): 673-679
[46] Kurtz S K, Perry T T. A powder technique for the evaluation of nonlinear optical materials. Journal of Applied Physics , 1968, 39(8): 3798-3813
AI Summary AI Mindmap
PDF(644 KB)

Accesses

Citations

Detail

Sections
Recommended

/