[1] Anderson J M, Rodriguez A, Chang D T. Foreign body reaction to biomaterials.
Seminars in Immunology , 2008, 20(2): 86-100
[2] Yang X B, Roach H I, Clarke N M,
. Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification.
Bone , 2001, 29(6): 523-531
[3] Harber G M. Cell-material interactions: fundamental design issues for tissue engineering and clinical considerations. In: Guelcher S A, Hollinger J O, eds.
An Introduction to Biomaterials .
Boca Raton, FL, USA:
CRC Press/Taylor & Francis Group, 2006, 189-210
[4] Kalbacova M, Rezek B, Baresova V,
. Nanoscale topography of nanocrystalline diamonds promotes differentiation of osteoblasts.
Acta Biomaterialia , 2009, 5(8): 3076-3085
[5] Biggs D L, Lengsfeld C S, Hybertson B M,
.
In vitro and
in vivo valuation of the effects of PLA microparticle crystallinity on cellular response.
Journal of Controlled Release , 2003, 92(1-2): 147-161
[6] Degirmenbasi N, Ozkan S, Kalyon D M,
. Surface patterning of poly(L-lactide) upon melt processing:
In vitro culturing of fibroblasts and osteoblasts on surfaces ranging from highly crystalline with spherulitic protrusions to amorphous with nanoscale indentations.
Journal of Biomedical Materials Research Part A , 2009, 88A(1): 94-104
[7] Kawamoto N, Mori H, Terano M,
. Blood compatibility of polypropylene surfaces in relation to the crystalline-amorphous microstructure.
Journal of Biomaterials Science, Polymer Edition , 1997, 8(11): 859-877
[8] Park A, Cima L G.
In vitro cell response to differences in poly-L-lactide crystallinity.
Journal of Biomedical Materials Research , 1996, 31(1): 117-130
[9] Wang S, Kempen D H, Yaszemski M J,
. The roles of matrix polymer crystallinity and hydroxyapatite nanoparticles in modulating material properties of photo-crosslinked composites and bone marrow stromal cell responses.
Biomaterials , 2009, 30(20): 3359-3370
[10] Washburn N R, Yamada K M, Simon C G Jr,
. High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation.
Biomaterials , 2004, 25(7-8): 1215-1224
[11] Winet H, Bao J Y. Comparative bone healing near eroding polylactide-polyglycolide implants of differing crystallinity in rabbit tibial bone chambers.
Journal of Biomaterials Science, Polymer Edition , 1997, 8(7): 517-532
[12] Wang D, Christensen K, Chawla K,
. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct
in vitro and
in vivo differentiation/mineralization potential.
Journal of Bone and Mineral Research , 1999, 14(6): 893-903
[13] Agrawal C M, Ray R B. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering.
Journal of Biomedical Materials Research , 2001, 55(2): 141-150
[14] Tiaw K S, Teoh S H, Chen R,
. Processing methods of ultrathin poly(?-caprolactone) films for tissue engineering applications.
Biomacromolecules , 2007, 8(3): 807-816
[15] Cheng Z, Teoh S-H. Surface modification of ultra thin poly (?-caprolactone) films using acrylic acid and collagen.
Biomaterials , 2004, 25(11): 1991-2001
[16] Bramfeldt H, Vermette P. Enhanced smooth muscle cell adhesion and proliferation on protein-modified polycaprolactone-based copolymers.
Journal of Biomedical Materials Research Part A , 2009, 88A(2): 520-530
[17] Chung T-W, Wang Y-Z, Huang Y-Y,
. Poly (?-caprolactone) grafted with nano-structured chitosan enhances growth of human dermal fibroblasts.
Artificial Organs , 2006, 30(1): 35-41
[18] Ishaug-Riley S L, Okun L E, Prado G,
. Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films.
Biomaterials , 1999, 20(23-24): 2245-2256
[19] Lee S-H, Kim B-S, Kim S H,
. Elastic biodegradable poly(glycolide-
co-caprolactone) scaffold for tissue engineering.
Journal of Biomedical Materials Research Part A , 2003, 66A(1): 29-37
[20] Otten J E, Wiedmann-Al-Ahmad M, Jahnke H,
. Bacterial colonization on different suture materials — a potential risk for intraoral dentoalveolar surgery.
Journal of Biomedical Materials Research Part B, Applied Biomaterials , 2005, 74B(1): 627-635
[21] Kowalczyńska H M, Ko?os R, Nowak-Wyrzykowska M,
. Atomic force microscopy evidence for conformational changes of fibronectin adsorbed on unmodified and sulfonated polystyrene surfaces.
Journal of Biomedical Materials Research Part A , 2009, 91A(4): 1239-1251
[22] Ajami-Henriquez D, Rodríguez M, Sabino M,
. Evaluation of cell affinity on poly(L-lactide) and poly(?-caprolactone) blends and on PLLA-b-PCL diblock copolymer surfaces.
Journal of Biomedical Materials Research Part A , 2008, 87A(2): 405-417
[23] Pelham R J Jr, Wang Y. Cell locomotion and focal adhesions are regulated by substrate flexibility.
Proceedings of the National Academy of Sciences of the United States of America , 1997, 94(25): 13661-13665
[24] Tzvetkova-Chevolleau T, Stéphanou A, Fuard D,
. The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure.
Biomaterials , 2008, 29(10): 1541-1551
[25] Mo X, Weber H-J, Ramakrishna S. PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation.
The International Journal of Artificial Organs , 2006, 29(8): 790-799
[26] Pamula E, Dobrzynski P, Szot B,
. Cytocompatibility of aliphatic polyesters —
In vitro tudy on fibroblasts and macrophages.
Journal of Biomedical Materials Research Part A , 2008, 87A(2): 524-535
[27] Tsai W B, Chen C H, Chen J F,
. The effects of types of degradable polymers on porcine chondrocyte adhesion, proliferation and gene expression.
Journal of Materials Science: Materials in Medicine , 2006, 17(4): 337-343
[28] Tang Z G, Callaghan J T, Hunt J A. The physical properties and response of osteoblasts to solution cast films of PLGA doped polycaprolactone.
Biomaterials , 2005, 26(33): 6618-6624
[29] Müller A J, Albuerne J, Marquez L,
. Self-nucleation and crystallization kinetics of double crystalline poly(
p-dioxanone)-
b-poly(?-caprolactone) diblock copolymers.
Faraday Discussions , 2005, 128: 231-252
[30] Hamley I W, Castelletto V, Castillo R V,
. Crystallization in poly(L-lactide)-
b-poly(?-caprolactone) double crystalline diblock copolymers: A study using X-ray scattering, differential scanning calorimetry, and polarized optical microscopy.
Macromolecules , 2005, 38(2): 463-472
[31] Gough J E, Christian P, Scotchford C A,
. Craniofacial osteoblast responses to polycaprolactone produced using a novel boron polymerisation technique and potassium fluoride post-treatment.
Biomaterials , 2003, 24(27): 4905-4912