[1] Azzazy H M, Mansour M M, Kazmierczak S C. Nanodiagnostics: a new frontier for clinical laboratory medicine.
Clinical Chemistry , 2006, 52(7): 1238–1246
[2] Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles.
Advanced Drug Delivery Reviews , 2008, 60(11): 1289–1306
[3] Han G, Ghosh P, Rotello V M. Multi-functional gold nanoparticles for drug delivery.
Advances in Experimental Medicine and Biology , 2007, 620: 48–56
[4] Han G, Ghosh P, Rotello V M. Functionalized gold nanoparticles for drug delivery.
Nanomedicine , 2007, 2(1): 113–123
[5] Jain K K. Role of nanobiotechnology in developing personalized medicine for cancer.
Technology in Cancer Research and Treatment , 2005, 4(6): 645–650
[6] Jain K K. Nanotechnology in clinical laboratory diagnostics.
Clinica Chimica Acta , 2005, 358(1-2): 37–54
[7] Jain K K. Applications of nanobiotechnology in clinical diagnostics.
Clinical Chemistry , 2007, 53(11): 2002–2009
[8] Longmire M, Choyke P L, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats.
Nanomedicine , 2008, 3(5): 703–717
[9] Sonvico F, Dubernet C, Colombo P,
. Metallic colloid nanotechnology, applications in diagnosis and therapeutics. Current Pharmaceutical Design , 2005, 11(16): 2091–2105
[10] Sperling R A, Gil P R, Zhang F, . Biological applications of gold nanoparticles. Chemical Society Reviews , 2008, 37(9): 1896–1908
[11] Yang D-P, Cui D-X. Advances and prospects of gold nanorods. Chemistry- An Asian Journal , 2008, 3(12): 2010–2022
[12] Walsh D, Arcelli L, Ikoma T, . Dextran templating for the synthesis of metallic and metal oxide sponges. Nature Materials , 2003, 2(6): 386–390
[13] Yang M D, Liu Y K, Shen J L, . Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters. Optics Express , 2008, 16(20): 15754–15758
[14] Kim W B, Voitl T, Rodriguez-Rivera G J, . Powering fuel cells with CO via aqueous polyoxometalates and gold catalysts. Science , 2004, 305(5688): 1280–1283
[15] Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews , 2004, 104(1): 293–346
[16] Esumi K, Suzuki K A, Torigoe K. Preparation of gold nanoparticles in formamide and N,N dimethylformamide in the presence of poly(amidoamine) dendrimers with surface methyl ester groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2001, 189(1-3): 155–161
[17] Feitz A G J, Waite D. Process for producing a nanoscale zero-valent metal by reduction of inorganic salts with dithionite or borohydride. Australia: CRC for Waste Management and Pollution Control Limited, 2004, 36
[18] Lin J, Zhou W, O’Connor C J. Formation of ordered arrays of gold nanaoparticles from CTAB reverse micelles. Materials Letters , 2001, 49(5): 282–286
[19] Beveridge T J, Murray R G. Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of Bacteriology , 1980, 141(2): 876–887
[20] Konish Y, Deshmukh N, Tsukiyama T, . Microbial preparation of gold nanoparticles by anaerobic bacterium. Transactions of the Materials Research Society of Japan , 2004, 29(5): 2341–2343
[21] Mukherjee P, Ahmad A, Mandal M, . Bioreduction of AuCl4- ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angewandte Chemie International Edition , 2001, 40(19): 3585–3588
[22] Huang J, Li Q, Sun D, . Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology , 2007, 18(10): 105104
[23] Kasthuri J, Kathiravan K, Rajendiran N. Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. Journal of Nanoparticle Research , 2009, 11(5): 1075–1085
[24] Kasthuri J, Veerapandian S, Rajendiran N. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids and Surfaces B: Biointerfaces , 2009, 68(1): 55–60
[25] Shankar S S, Rai A, Ahmad A, . Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science , 2004, 275(2): 496–502
[26] Ihme N, Kiesewetter H, Jung F, . Leg oedema protection from a buckwheat herb tea in patients with chronic venous insufficiency: a single-centre, randomised, double-blind, placebo-controlled clinical trial. European Journal of Clinical Pharmacology , 1996, 50(6): 443–447
[27] Nestler J E, Jakubowicz D J, Reamer P, . Ovulatory and metabolic effects of d-chiro-inositol in the polycystic ovary syndrome. The New England Journal of Medicine , 1999, 340(17): 1314–1320
[28] Iuorno M J, Jakubowicz D J, Baillargeon J-P, . Effects of D-chiro-inositol in lean women with the polycystic ovary syndrome. Endocrine Practice , 2002, 8(6): 417–423
[29] Tomotake H, Shimaoka I, Kayashita J, . Stronger suppression of plasma cholesterol and enhancement of the fecal excretion of steroids by a buckwheat protein product than by a soy protein isolate in rats fed on a cholesterol-free diet. Bioscience, Biotechnology, and Biochemistry , 2001, 65(6): 1412–1414
[30] Bonafaccia G, Marocchini M, Kreft I. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chemistry , 2003, 80(1): 9–15
[31] Kreft S, Knapp M, Kreft I. Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. Journal of Agricultural and Food Chemistry , 1999, 47(11): 4649–4652
[32] Horbowicz M, Brenac P, Obendorf R L. Fagopyritol B1, O-α-D-galactopyranosyl-(1→2)-D-chiro-inositol, a galactosyl cyclitol in maturing buckwheat seeds associated with desiccation tolerance. Planta , 1998, 205(1): 1–11
[33] Kreft S, Strukelj B, Gaberscik A, . Rutin in buckwheat herbs grown at different UV-B radiation levels: comparison of two UV spectrophotometric and an HPLC method. Journal of Experimental Botany , 2002, 53(375): 1801–1804
[34] Patel K, Kapoor S, Dave D P, . Synthesis of nanosized silver colloids by microwave dielectric heating. Journal of Chemical Sciences , 2005, 117(1): 53–60
[35] Yin H B, Yamamoto T, Wada Y J, . Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Materials Chemistry and Physics , 2004, 83(1): 66–70
[36] Quettier-Deleu C, Gressier B, Vasseur J, . Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology , 2000, 72(1–2): 35–42
[37] Raghunandan D, Basavaraja S, Mahesh B, et al. Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract. Nanobiotechnology , 2009,5(1–4): 34–41
[38] Babu P J, Sharma P, Borthakur B B, . Synthesis of gold nanoparticles using Mentha arvensis leaf extract. International Journal of Green Nanotechnology: Physics and Chemistry , 2010, 2(2): 62–68
[39] Das R K, Borthakur B B, Bora U. Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Materials Letters , 2010, 64(13): 1445–1447
[40] Babu P J, Das R K, Kumar A, . Microwave-mediated synthesis of gold nanoparticles using coconut water. International Journal of Green Nanotechnology , 2011, 3(1): 13–21
[41] Brugnerotto J, Lizardi J, Goycoolea F M, . An infrared investigation in relation with chitin and chitosan characterization. Polymer , 2001, 42(8): 3569–3580