[1] Braddock M, Houston P, Campbell C,
. Born again bone: tissue engineering for bone repair.
News in Physiological Sciences , 2001, 16(5): 208-213
[2] Shors E C. Coralline bone graft substitutes.
Orthopedic Clinics of North America , 1999, 30(4): 599-613
[3] Webster T J. Nanophase ceramics as improved bone tissue engineering materials.
American Ceramic Society Bulletin , 2003, 82(6): 23-28
[4] Orthopaedic Biomaterials Market Review.
[5]
American Academy of Orthopaedic Surgeons. The Evolving Role of Bone-Graft Substitutes.
AAOS 77th Annual Meeting, New Orleans, LA, USA , 2010.
http://www.aatb.org/aatb/files/ccLibraryFiles/Filename/000000000322/BoneGraftSubstitutes2010.pdf[6] Tomford W W. Overview. In: Laurencin C T, ed.
Bone Graft Substitutes. West Conshohocken, PA ,
USA:
ASTM International, 2003
[7] Khan Y, Laurencin C T. Fracture repair with ultrasound: clinical and cell-based evaluation.
The Journal of Bone and Joint Surgery (American Volume) , 2008, 90(Suppl 1): 138-144
[8] Laurencin C, Khan Y, El-Amin S F. Bone graft substitutes.
Expert Review of Medical Devices , 2006, 3(1): 49-57
[9] Ilan D I, Ladd A L. Bone graft substitutes.
Operative Techniques in Plastic and Reconstructive Surgery , 2002, 9(4): 151-160
[10] Laurencin C T, Khan Y. Bone graft substitute materials.
http://emedicinemedscapecom/article/1230616-overview.[11] Goulet J A, Senunas L E, DeSilva G L,
. Autogenous iliac crest bone graft. Complications and functional assessment.
Clinical Orthopaedics and Related Research , 1997, 339: 76-81
[12] Berrey B H Jr, Lord C F, Gebhardt M C,
. Fractures of allografts. Frequency, treatment, and end-results.
The Journal of Bone and Joint Surgery (American Volume) , 1990, 72(6): 825-833
[13] Ito H, Koefoed M, Tiyapatanaputi P,
. Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy.
Nature Medicine , 2005, 11(3): 291-297
[14] Laurencin C T, Ambrosio A M A, Borden M D,
. Tissue engineering: orthopedic applications.
Annual Review of Biomedical Engineering , 1999, 1(1): 19-46
[15] Langer R, Vacanti J P. Tissue engineering.
Science , 1993, 260(5110): 920-926
[16] Langer R. Tissue engineering.
Molecular Therapy , 2000, 1(1): 12-15
[17] Khan Y, Yaszemski M J, Mikos A G,
. Tissue engineering of bone: material and matrix considerations.
The Journal of Bone and Joint Surgery (American Volume) , 2008, 90(Suppl 1): 36-42
[18] Athanasiou K A, Zhu C F, Lanctot D R,
. Fundamentals of biomechanics in tissue engineering of bone.
Tissue Engineering , 2000, 6(4): 361-381
[19] Einhorn T A. The cell and molecular biology of fracture healing.
Clinical Orthopaedics and Related Research , 1998, 355(Supplement): S7-S21
[20] Schindeler A, McDonald M M, Bokko P,
. Bone remodeling during fracture repair: The cellular picture.
Seminars in Cell and Developmental Biology , 2008, 19(5): 459-466
[21] Nair L S, Laurencin C T. Biodegradable polymers as biomaterials.
Progress in Polymer Science , 2007, 32(8-9): 762-798
[22] Deng M, Kumbar S G, Lo K W H,
. Novel polymer-ceramics for bone repair and regeneration.
Recent Patents on Biomedical Engineering , 2011, 4(3) (in press)
[23] Deng M, Kumbar S G, Wan Y,
. Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications.
Soft Matter , 2010, 6(14): 3119-3132
[24] Deng M, Nair L S, Nukavarapu S P,
. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering.
Biomaterials , 2010, 31(18): 4898-4908
[25] Deng M, Nair L S, Nukavarapu S P,
. Biomimetic, bioactive etheric polyphosphazene-poly(lactide-co-glycolide) blends for bone tissue engineering.
Journal of Biomedical Materials Research Part A , 2010, 92(1): 114-125
[26] Deng M, Nair L S, Nukavarapu S P,
. Miscibility and
in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl phenoxy) phosphazene] and poly(lactic acid-glycolic acid).
Biomaterials , 2008, 29(3): 337-349
[27] Deng M, Nair L S, Nukavarapu S P,
.
In situ porous structures: a unique polymer erosion mechanism in biodegradable dipeptide-based polyphosphazene and polyester blends producing matrices for regenerative engineering.
Advanced Functional Materials , 2010, 20(17): 2743-2957
[28] Kierszenbaum A L. Connective tissue. In: Kierszenbaum A L, ed.
Histology and Cell Biology: An Introduction to Pathology. St .
Louis:
Mosby Inc., 2002, 118-129
[29] Jee W S S. Integrated bone tissue physiology: anatomy and physiology. In: Cowin S C, ed.
Bone Mechanics Handbook. Boca Raton, FL ,
USA:
CRC Press LLC, 2001
[30] Rho J-Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone.
Medical Engineering & Physics , 1998, 20(2): 92-102
[31] Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting.
Composites Science and Technology , 2005, 65(15-16): 2385-2406
[32] Weiner S, Wagner H D. The material bone: structure-mechanical function relations.
Annual Review of Materials Science , 1998, 28(1): 271-298
[33] Marotti G. A new theory of bone lamellation.
Calcified Tissue International , 1993, 53(Suppl 1): S47-S56
[34] Bilezikian J P, Raisz L G, Rodan G A. Principles of Bone Biology.
San Diego, CA ,
USA:
Academic Press, 1996
[35] Wiesmann H P, Meyer U, Plate U,
. Aspects of collagen mineralization in hard tissue formation.
International Review of Cytology , 2004, 242: 121-156
[36] van der Rest M, Garrone R. Collagen family of proteins.
The FASEB Journal , 1991, 5(13): 2814-2823
[37] Weiner S, Traub W. Bone structure: from angstroms to microns.
The FASEB Journal , 1992, 6(3): 879-885
[38] Landis W J. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix.
Bone , 1995, 16(5): 533-544
[39] Ziv V, Weiner S. Bone crystal sizes: a comparison of transmission electron microscopic and X-ray diffraction line width broadening techniques.
Connective Tissue Research , 1994, 30(3): 165-175
[40] Rey C, Miquel J L, Facchini L,
. Hydroxyl groups in bone mineral.
Bone , 1995, 16(5): 583-586
[41] Sommerfeldt D, Rubin C. Biology of bone and how it orchestrates the form and function of the skeleton.
European Spine Journal , 2001, 10(Suppl 2): S86-S95
[42] Beddington R S, Robertson E J. Axis development and early asymmetry in mammals.
Cell , 1999, 96(2): 195-209
[43] Aubin J E. Bone stem cells.
Journal of Cellular Biochemistry, Supplement , 1998, 72(Suppl 30-31): 73-82
[44] Ferrari S L, Traianedes K, Thorne M,
. A role for N-cadherin in the development of the differentiated osteoblastic phenotype.
Journal of Bone and Mineral Research , 2000, 15(2): 198-208
[45] Lecanda F, Towler D A, Ziambaras K,
. Gap junctional communication modulates gene expression in osteoblastic cells.
Molecular Biology of the Cell , 1998, 9(8): 2249-2258
[46] Liu X, Ma P X. Polymeric scaffolds for bone tissue engineering.
Annals of Biomedical Engineering , 2004, 32(3): 477-486
[47] Li Z, Kong K, Qi W. Osteoclast and its roles in calcium metabolism and bone development and remodeling.
Biochemical and Biophysical Research Communications , 2006, 343(2): 345-350
[48] Blair H C, Teitelbaum S L, Ghiselli R,
. Osteoclastic bone resorption by a polarized vacuolar proton pump.
Science , 1989, 245(4920): 855-857
[49] Baroli B. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges.
Journal of Pharmaceutical Sciences , 2009, 98(4): 1317-1375
[50] Veerman E C, Suppers R J, Klein C P,
. SDS-PAGE analysis of the protein layers adsorbing
in vivo and
in vitro to bone substituting materials.
Biomaterials , 1987, 8(6): 442-448
[51] Nojiri C, Okano T, Koyanagi H,
.
In vivo protein adsorption on polymers: visualization of adsorbed proteins on vascular implants in dogs.
Journal of Biomaterials Science, Polymer Edition , 1993, 4(2): 75-88
[52] Davies J E. Mechanisms of endosseous integration.
The International Journal of Prosthodontics , 1998, 11(5): 391-401
[53] Soultanis K, Pyrovolou N, Karamitros A,
. Instrumentation loosening and material of implants as predisposal factors for late postoperative infections in operated idiopathic scoliosis.
Studies in Health Technology and Informatics , 2006, 123: 559-564
[54] Kirkpatrick J S, Venugopalan R, Beck P,
. Corrosion on spinal implants.
Journal of Spinal Disorders & Techniques , 2005, 18(3): 247-251
[55] Laurencin C T, Khan Y, Kofron M,
. The ABJS Nicolas Andry Award: Tissue engineering of bone and ligament: a 15-year perspective.
Clinical Orthopaedics and Related Research , 2006, 447: 221-236
[56] Sung H J, Meredith C, Johnson C,
. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
Biomaterials , 2004, 25(26): 5735-5742
[57] Kuboki Y, Takita H, Kobayashi D,
. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis.
Journal of Biomedical Materials Research , 1998, 39(2): 190-199
[58] D’Lima D D, Lemperle S M, Chen P C,
. Bone response to implant surface morphology.
The Journal of Arthroplasty , 1998, 13(8): 928-934
[59] Sul Y-T, Johansson C B, Petronis S,
. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition.
Biomaterials , 2002, 23(2): 491-501
[60] Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics.
Clinical Orthopaedics and Related Research , 1981, 157 : 259-278
[61] Ducheyne P, de Groot K.
In vivo surface activity of a hydroxyapatite alveolar bone substitute.
Journal of Biomedical Materials Research , 1981, 15(3): 441-445
[62] Webster T J, Ergun C, Doremus R H,
. Enhanced functions of osteoblasts on nanophase ceramics.
Biomaterials , 2000, 21(17): 1803-1810
[63] Lee C H, Singla A, Lee Y. Biomedical applications of collagen.
International Journal of Pharmaceutics , 2001, 221(1-2): 1-22
[64] Miyata T, Taira T, Noishiki Y. Collagen engineering for biomaterial use.
Clinical Materials , 1992, 9(3-4): 139-148
[65] Rao K P. Recent developments of collagen-based materials for medical applications and drug delivery systems.
Journal of Biomaterials Science, Polymer Edition , 1995, 7(7): 623-645
[66] Urist M R, Nilsson O, Rasmussen J,
. Bone regeneration under the influence of a bone morphogenetic protein (BMP) beta tricalcium phosphate (TCP) composite in skull trephine defects in dogs.
Clinical Orthopaedics and Related Research , 1987, 214: 295-304
[67] Urist M R, Peltier L F. Bone: formation by autoinduction.
Clinical Orthopaedics and Related Research , 2002, 395: 4-10
[68] Sandhu H S, Boden S D. Biologic enhancement of spinal fusion.
Orthopedic Clinics of North America , 1998, 29(4): 621-631
[69] Wang E A, Rosen V, D’Alessandro J S,
. Recombinant human bone morphogenetic protein induces bone formation.
Proceedings of the National Academy of Sciences of the United States of America , 1990, 87(6): 2220-2224
[70] Bianco P, Riminucci M, Gronthos S,
. Bone marrow stromal stem cells: nature, biology, and potential applications.
Stem Cells , 2001, 19(3): 180-192
[71] Tiedeman J J, Connolly J F, Strates B S,
. Treatment of nonunion by percutaneous injection of bone marrow and demineralized bone matrix. An experimental study in dogs.
Clinical Orthopaedics and Related Research , 1991, 268: 294-302
[72] Grauer J N, Beiner J M, Kwon B K,
. Bone graft alternatives for spinal fusion.
BioDrugs , 2003, 17(6): 391-394
[73] Chan C K, Kumar T S, Liao S,
. Biomimetic nanocomposites for bone graft applications.
Nanomedicine , 2006, 1(2): 177-188
[74] Christenson E M, Anseth K S, van den Beucken J J J P,
. Nanobiomaterial applications in orthopedics.
Journal of Orthopaedic Research , 2007, 25(1): 11-22
[75] Webster T J, Ahn E S. Nanostructured biomaterials for tissue engineering bone.
Advances in Biochemical Engineering/Biotechnology , 2007, 103: 275-308
[76] Webster T J, Siegel R W, Bizios R. Osteoblast adhesion on nanophase ceramics.
Biomaterials , 1999, 20(13): 1221-1227
[77] Webster T J, Ergun C, Doremus R H,
. Enhanced osteoclast-like cell functions on nanophase ceramics.
Biomaterials , 2001, 22(11): 1327-1333
[78] Liao S S, Cui F Z.
In vitro and
in vivo degradation of mineralized collagen-based composite scaffold: nanohydroxyapatite/collagen/poly(L-lactide).
Tissue Engineering , 2004, 10(1-2): 73-80
[79] Liao S S, Cui F Z, Zhang W,
. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite.
Journal of Biomedical Materials Research Part B: Applied Biomaterials , 2004, 69(2): 158-165
[80] Laurencin C T, Attawia M A, Elgendy H E,
. Tissue engineered bone-regeneration using degradable polymers: The formation of mineralized matrices.
Bone , 1996, 19(1 Suppl): S93-S99
[81] Zhang P, Hong Z, Yu T,
.
In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-
co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide).
Biomaterials , 2009, 30(1): 58-70
[82] Elias K L, Price R L, Webster T J. Enhanced functions of osteoblasts on nanometer diameter carbon fibers.
Biomaterials , 2002, 23(15): 3279-3287
[83] Price R L, Waid M C, Haberstroh K M,
. Selective bone cell adhesion on formulations containing carbon nanofibers.
Biomaterials , 2003, 24(11): 1877-1887
[84] Mistry A S, Mikos A G, Jansen J A. Degradation and biocompatibility of a poly(propylene fumarate)-based/alumoxane nanocomposite for bone tissue engineering.
Journal of Biomedical Materials Research Part A , 2007, 83(4): 940-953
[85] Horch R A, Shahid N, Mistry A S,
. Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering.
Biomacromolecules , 2004, 5(5): 1990-1998
[86] Shi X, Hudson J L, Spicer P P,
. Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering.
Biomacromolecules , 2006, 7(7): 2237-2242
[87] Liu H, Slamovich E B, Webster T J. Increased osteoblast functions on nanophase titania dispersed in poly-lactic-
co-glycolic acid composites.
Nanotechnology , 2005, 16(7): S601-S608
[88] Webster T J, Smith T A. Increased osteoblast function on PLGA composites containing nanophase titania.
Journal of Biomedical Materials Research Part A , 2005, 74(4): 677-686
[89] Li W J, Laurencin C T, Caterson E J,
. Electrospun nanofibrous structure: a novel scaffold for tissue engineering.
Journal of Biomedical Materials Research , 2002, 60(4): 613-621
[90] Nair L S, Laurencin C T. Nanofibers and nanoparticles for orthopaedic surgery applications.
The Journal of Bone and Joint Surgery (American Volume) , 2008, 90(Suppl 1): 128-131
[91] Nair L S, Bhattacharyya S, Laurencin C T. Development of novel tissue engineering scaffolds via electrospinning.
Expert Opinion on Biological Therapy , 2004, 4(5): 659-668
[92] Woo K M, Chen V J, Ma P X. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment.
Journal of Biomedical Materials Research Part A , 2003, 67(2): 531-537
[93] Pelled G, Tai K, Sheyn D,
. Structural and nanoindentation studies of stem cell-based tissue-engineered bone.
Journal of Biomechanics , 2007, 40(2): 399-411
[94] Huang Z-M, Zhang Y-Z, Kotaki M,
. A review on polymer nanofibers by electrospinning and their applications in nanocomposites.
Composites Science and Technology , 2003, 63(15): 2223-2253
[95] Ma P X, Zhang R. Synthetic nano-scale fibrous extracellular matrix.
Journal of Biomedical Materials Research , 1999, 46(1): 60-72
[96] Whitesides G M, Grzybowski B. Self-assembly at all scales.
Science , 2002, 295(5564): 2418-2421
[97] Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces.
Physical Review , 1914, 3(2): 69-91
[98] Formhals A. Process and apparatus for preparing artificial threads. US Patent,
1975504, 1934
[99] Kumbar S G, James R, Nukavarapu S P,
. Electrospun nanofiber scaffolds: engineering soft tissues.
Biomedical Materials , 2008, 3(3): 034002
[100] Li D, Wang Y, Xia Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays.
Nano Letters , 2003, 3(8): 1167-1171
[101] Patel S, Kurpinski K, Quigley R,
. Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance.
Nano Letters , 2007, 7(7): 2122-2128
[102] Ma Z, Kotaki M, Inai R,
. Potential of nanofiber matrix as tissue-engineering scaffolds.
Tissue Engineering , 2005, 11(1-2): 101-109
[103] Deng M, James R, Laurencin C T,
. Nanostructured polymeric scaffolds for orthopaedic regenerative engineering.
IEEE Transactions on Nanobioscience , 2011 (in press)
[104] Kumbar S G, Nukavarapu S P, James R,
. Recent patents on electrospun biomedical nanostructures: an overview.
Recent Patents on Biomedical Engineering , 2008, 1(1): 68-78
[105] Bhattarai N, Edmondson D, Veiseh O,
. Electrospun chitosan-based nanofibers and their cellular compatibility.
Biomaterials , 2005, 26(31): 6176-6184
[106] Zhang Y, Venugopal J R, El-Turki A,
. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering.
Biomaterials , 2008, 29(32): 4314-4322
[107] Yang D, Jin Y, Zhou Y,
.
In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds.
Macromolecular Bioscience , 2008, 8(3): 239-246
[108] Schneider O D, Weber F, Brunner T J,
.
In vivo and
in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects.
Acta Biomaterialia , 2009, 5(5): 1775-1784
[109] Kim H-W, Kim H-E, Knowles J C. Production and potential of bioactive glass nanofibers as a next-generation biomaterial.
Advanced Functional Materials , 2006, 16(12): 1529-1535
[110] Kim H-W, Song J-H, Kim H-E. Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration.
Advanced Functional Materials , 2005, 15(12): 1988-1994
[111] Nair L S, Bhattacharyya S, Bender J D,
. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications.
Biomacromolecules , 2004, 5(6): 2212-2220
[112] Bhattacharyya S, Kumbar S G, Khan Y M,
. Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers: scaffolds for bone tissue engineering.
Journal of Biomedical Nanotechnology , 2009, 5(1): 69-75
[113] Bhattacharyya S, Nair L S, Singh A,
. Electrospinning of poly[bis(ethyl alanato) phosphazene] nanofibers.
Journal of Biomedical Nanotechnology , 2006, 2(1): 36-45
[114] Conconi M T, Lora S, Menti A M,
.
In vitro evaluation of poly[bis(ethyl alanato)phosphazene] as a scaffold for bone tissue engineering.
Tissue Engineering , 2006, 12(4): 811-819
[115] Laurencin C T, Kumbar S G, Deng M,
. Nano-structured scaffolds for regenerative engineering. In:
Honorary Series in Translational Research in Biomaterials, 2010 AICHE Annual Meeting, Salt Lake City, Utah, USA , 2010
[116] Deng M, Kumbar S G, Nair L S,
. Biomimetic structures: biological implications of dipeptide-substituted polyphosphazene-polyester blend nanofiber matrices for load-bearing bone regeneration.
Advanced Functional Materials , 2011, 21(14): 2641-2651
[117] Place E S, Evans N D, Stevens M M. Complexity in biomaterials for tissue engineering.
Nature Materials , 2009, 8(6): 457-470