[1] Schubert E F. Doping in III-V Semiconductors, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering.
Cambridge:
Cambridge University Press, 2005, 1
[2] Shockley W, Moll J L. Solubility of flaws in heavily-doped semiconductors.
Physical Review , 1960, 119(5): 1480-1482
[3] Pearton S J, Cho H, Ren F,
. In: Feenstra R, Myers T, Shur M S, et al., eds. GaN and Related Alloys.
Materials Research Society , 2000, 595: W10.6.1-W10.6.10
[4] Wei S-H. Overcoming the doping bottleneck in semiconductors.
Computational Materials Science , 2004, 30(3-4): 337-348
[5] Copel M, Reuter M C, Kaxiras E,
. Surfactants in epitaxial growth.
Physical Review Letters , 1989, 63(6): 632-635
[6] Rosenfeld G, Servaty R, Teichert C,
. Layer-by-layer growth of Ag on Ag(111) induced by enhanced nucleation: A model study for surfactant-mediated growth.
Physical Review Letters , 1993, 71(6): 895-898
[7] Meyer J A, Vrijmoeth J, van der Vegt H A,
. Importance of the additional step-edge barrier in determining film morphology during epitaxial growth.
Physical Review B , 1995, 51(20): 14790-14793
[8] Pillai M R, Kim S-S, Ho S T,
. Growth of In
xGa
1-xAs/GaAs heterostructures using Bi as a surfactant.
Journal of Vacuum Science and Technology B , 2000, 18(3): 1232-1236
[9] Fetzer C M, Lee R T, Shurtleff J K,
. The use of a surfactant (Sb) to induce triple period ordering in GaInP.
Applied Physics Letters , 2000, 76(11): 1440-1442
[10] Chapman D C, Howard A D, Stringfellow G B. Zn enhancement during surfactant-mediated growth of GaInP and GaP.
Journal of Crystal Growth , 2006, 287(2): 647-651
[11] Howard A D, Chapman D C, Stringfellow G B. Effects of surfactants Sb and Bi on the incorporation of zinc and carbon in III/V materials grown by organometallic vapor-phase epitaxy.
Journal of Applied Physics , 2006, 100(4): 044904(8 pages)
[12] Zhu J Y, Liu F, Stringfellow G B. Dual-surfactant effect to enhance
p-type doping in III-V semiconductor thin films.
Physical Review Letters , 2008, 101(19): 196103 (4 pages)
[13] Zhu J, Liu F, Stringfellow G B. Enhanced cation-substituted
p-type doping in GaP from dual surfactant effects.
Journal of Crystal Growth , 2010, 312(2): 174-179
[14] Zhang L, Yan Y, Wei S-H. Enhancing dopant solubility via epitaxial surfactant growth.
Physical Review B , 2009, 80(7): 073305 (4 pages)
[15] Sadigh B, Lenosky T J, Caturla M-J,
. Large enhancement of boron solubility in silicon due to biaxial stress.
Applied Physics Letters , 2002, 80(25): 4738-4740
[16] Zhu J, Liu F, Stringfellow G B,
. Strain-enhanced doping in semiconductors: Effects of dopant size and charge state.
Physical Review Letters , 2010, 105(19): 195503 (4 pages)
[17] Zhu J, Wei S-H. Tuning doping site and type by strain: Enhanced
p-type doping in Li doped ZnO.
Solid State Communications , 2011, 151(20): 1437-1439
[18] Ahn C, Bennett N, Dunham S T,
. Stress effects on impurity solubility in crystalline materials: A general model and density-functional calculations for dopants in silicon.
Physical Review B , 2009, 79(7): 073201 (4 pages)
[19] Bennett N S, Smith A J, Gwilliam R M,
. Antimony for
n-type metal oxide semiconductor ultrashallow junctions in strained Si: A superior dopant to arsenic?
Journal of Vacuum Science and Technology B , 2008, 26(1): 391-395
[20] Kahwaji S, Roorda S, Xiao S Q F,
. The influence of a Pb surfactant on Mn delta-doped layers on Si(001).
APS March Meeting , 2010, 55(2): H25.6
[21] Sato T, Mitsuhara M, Iga R,
. Influence of Sb surfactant on carrier concentration in heavily Zn-doped InGaAs grown by metalorganic vapor phase epitaxy.
Journal of Crystal Growth , 2011, 315(1): 64-67
[22] Lu G-H, Liu F. Towards quantitative understanding of formation and stability of Ge hut islands on Si(001).
Physical Review Letters , 2005, 94(17): 176103 (4 pages)
[23] Chen G, Cheng S F, Tobin D J,
. Direct evidence for a hydrogen-stabilized surface indium phosphide (001)-(2×1): reconstruction.
Physical Review B , 2003, 68(12): 121303(R) (3 pages)
[24] Larsen P K, Chadi D J. Surface structure of As-stabilized GaAs(001): 2×4, c(2×8), and domain structures.
Physical Review B , 1988, 37(14): 8282-8288
[25] McCluskey M D, Haller E E, Walker J,
. Spectroscopy of hydrogen-related complexes in GaP:Zn.
Applied Physics Letters , 1994, 65(17): 2191-2192
[26] Rao E V K, Theys B, Gottesman Y,
. In: Proceedings of the 11th International Conference on Indium Phosphide and Related Materials.
New York:
IEEE, 1999
[27] Chen C H, Stockman S A, Peanasky M J,
. In: Stringfellow G B, Craford M G, eds. Semiconductors and Semimetals.
New York:
Academic Press, 1997, 48: 122
[28] Jiao W,
. Electronic Materials Conference 2011
[29] Van Vechten J A, Phillips J C. New set of tetrahedral covalent radii.
Physical Review B , 1970, 2(6): 2160-2167
[30] Duclere J-R, Novotny M, Meaney A,
. Properties of Li-, P- and N-doped ZnO thin films prepared by pulsed laser deposition.
Superlattices and Microstructures , 2005, 38(4-6): 397-405
[31] Oral A Y, Bahsi Z B, Aslan M H. Microstructure and optical properties of nanocrystalline ZnO and ZnO:(Li or Al) thin films.
Applied Surface Science , 2007, 253(10): 4593-4598
[32] Majumdar S, Banerji P. Effect of Li incorporation on the structural and optical properties of ZnO.
Superlattices and Microstructures , 2009, 45(6): 583-589
[33] Poizot P, Laruelle S, Grugeon S,
. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
Nature , 2000, 407(6803): 496-499
[34] Hu Y-S, Guo Y-G, Sigle W,
. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity.
Nature Materials , 2006, 5(9): 713-717
[35] Koudriachova M V, Harrison N M, de Leeuw S W. Effect of diffusion on lithium intercalation in titanium dioxide.
Physical Review Letters , 2001, 86(7): 1275-1278