[1] St?ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range.
Journal of Colloid and Interface Science, 1968, 26(1): 62–69
10.1016/0021-9797(68)90272-5[2] Brinker C J, Scherrer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing.
London:
Academic Press, 1990
[3] Hench L L, West J K. The sol-gel process. Chemical Reviews
, 1990, 90(1): 33–72
[4] B?uerlein E. Biomineralization.
Cambridge: Wiley-VCH, 2004
10.1002/3527604138[5] Müller W E G. Molecular phylogeny of metazoa (animals): Monophyletic origin.
Naturwissenschaften, 1995, 82(7): 321–329
[6] Müller W E G. Molecular phylogeny of Eumetazoa: genes in sponges (Porifera) give evidence for monophyly of animals.
Progress in Molecular and Subcellular Biology, 1998, 19: 89–132
[7] Müller W E G.Review: How was metazoan threshold crossed?
The hypothetical Urmetazoa. Comparative Biochemistry and Physiology
, 2001, 129(2-3): 433–460
[8] Wang X H, Zhang X H, Schr?der H C,
. Giant basal spicule from the deep-sea glass sponge Monorhaphis chuni: synthesis of the largest bio-silica structure on Earth by silicatein. Frontiers of Materials Science in China, 2009, 3(3): 226–240
[9] Wang X, Wiens M, Schr?der H C, . Morphology of sponge spicules: silicatein a structural protein for bio-silica formation. Advanced Engineering Materials, 2010, 12(9): B422–B437
[10] Simpson T L. The Cell Biology of Sponges.New York: Springer-Verlag, 1984
[11] Sandford F. Physical and chemical analysis of the siliceous skeleton in six sponges of two groups (demospongiae and hexactinellida). Microscopy Research and Technique , 2003, 62(4): 336–355
[12] Shimizu K, Cha J, Stucky G D, . Silicatein α: Cathepsin L-like protein in sponge biosilica. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(11): 6234–6238
[13] Perry C C, Belton D, Shafran K. Studies of biosilicas; structural aspects, chemical principles, model studies and the future. Progress in Molecular and Subcellular Biology, 2003, 33: 269–299
[14] Iler R K. The Chemistry of Silica.New York: John Wiley & Sons, 1979
[15] Perry C C. Silicification: the process by which organisms capture and mineralize silica. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 291–327
[16] Cha J N, Shimizu K, Zhou Y, . Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(2): 361–365
[17] Weaver J, Morse D E. Molecular biology of demosponge axial filaments and their roles in biosilification. Microscopy Research and Technique, 2003, 62(4): 356–367
[18] Krasko A, Lorenz B, Batel R, . Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. European Journal of Biochemistry, 2000, 267(15): 4878–4887
[19] Krasko A, Gamulin V, Seack J, . Cathepsin, a major protease of the marine sponge Geodia cydonium: purification of the enzyme and molecular cloning of cDNA.Molecular Marine Biology and Biotechnology , 1997, 6(4): 296–307
[20] Schr?der H C, Perovi?-Ottstadt S, Wiens M, . Differentiation capacity of the epithelial cells in the sponge Suberites domuncula. Cell and Tissue Research, 2004, 316(2): 271–280
[21] Schr?der H C, Perovi?-Ottstadt S, Grebenjuk V A, .. Biosilica formation in spicules of the sponge Suberites domuncula: synchronous expression of a gene cluster. Genomics, 2005, 85(6): 666–678
[22] Müller W E G, Belikov S I, Tremel W, . Siliceous spicules in marine demosponges (example Suberites domuncula). Micron, 2006, 37(2): 107–120
[23] Kaluzhnaya O V, Belikov S I, Schr?der H C, . Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part II. Molecular biological studies. Naturwissenschaften , 2005, 92(3): 134–138
[24] Wiens M, Belikov S I, Kaluzhnaya O V, . Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Development Genes and Evolution, 2006, 216(5): 229–242
[25] Krasko A, Schr?der H C, Batel R, . Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula.DNA and Cell Biology , 2002, 21(1): 67–80
[26] Müller W E G, Krasko A, Le Pennec G, . Biochemistry and cell biology of silica formation in sponges. Microscopy Research and Technique, 2003, 62: 368–377
[27] Müller W E G, Rothenberger M, Boreiko A, . Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell and Tissue Research, 2005, 321(2): 285–297
[28] Tao K, Stearns N A, Dong J, . The proregion of cathepsin L is required for proper folding, stability and ER exit. Archives of Biochemistry and Biophysics, 1994, 311(1): 19–27
[29] Schr?der H C, Wiens M, Schlo?macher U, . Silicatein-mediated polycondensation of orthosilicic acid: modeling of catalytic mechanism involving ring formation. Silicon, 2011,10.1007/s12633-010-9057-4 (in press)
[30] Schr?der H C,Krasko A, Le Pennec G, . Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. Progress in Molecular and Subcellular Biology, 2003, 33: 249–268
[31] Sly W S, Hu P Y. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annual Review of Biochemistry, 1995, 64: 375–401
[32] Müller W E G, Schr?der H C, Loren B, . Silicatein-mediated synthesis of amorphous silicates and siloxanes and use thereof. European Patent, No. EP 1320624, 2000-07-28
[33] Müller W E G, Schr?der H C, Krakso A. Decomposition and modification of silicate and silicone by silicase and use of the reversible enzyme. US Patent, No. US 2007218044, 2007-09-20
[34] Sun Q, Vrieling E G, van Santen R A, . Bioinspired synthesis of mesoporous silicas. Current Opinion in Solid State and Materials Science , 2004, 8(2): 111–120
[35] Schr?der H C, Brandt D, Schlo?macher U, . Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Naturwissenschaften, 2007, 94(5): 339–359
[36] Müller W E G, Wang X M, Belikov S I, . Formation of siliceous spicules in demosponges: example Suberites domuncula. In: B?uerlein E, ed. Handbook of Biomineralization, Vol. 1: Biological Aspects and Structure Formation. Weinheim: Wiley-VCH, 2007, 59–82
[37] Schr?der H C, Wang X H, Tremel W, . Biofabrication of biosilica-glass by living organisms. Natural Product Reports, 2008, 25(3): 455–474
[38] Müller W E G, Wang X H, Cui F Z, . Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials. Applied Microbiology and Biotechnology, 2009, 83(3): 397–413
[39] Wiens M, Wang X, Natalio F, . Bioinspired fabrication of bio-silica-based bone-substitution materials. Advanced Engineering Materials, 2010, 12(9): B438–B450
[40] Hench L L, Wilson J.Surface-active biomaterials. Science, 1984, 226(4675): 630–636
[41] Yamamuro T, Hench L L, Wilson J. Handbook on Bioactive Ceramics, vol. I: Bioactive Glasses and Glass-Ceramics. Boca Raton, FL: CRC Press, 1990
[42] Schr?der H C, Boreiko O, Krasko A, . Mineralisation of SaOS-2 cells on enzymatically (silicatein) modified bioactive osteoblast-stimulating surfaces. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005, 75B(2): 387–392
[43] Curnow P, Kisailus D, Morse D E. Biocatalytic synthesis of poly(l-lactide) by native and recombinant forms of the silicatein enzymes. Angewandte Chemie International Edition, 2006, 45(4): 613–616
[44] Wiens M, Wang X H, Schr?der H C, . The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells. Biomaterials, 2010, 31(30): 7716–7725
[45] Wiens M, Wang X H, Schlo?macher U, . Osteogenic potential of bio-silica on human osteoblast-like (SaOS-2) cells. Calcified Tissue International, 2010, 87(6): 513–524
[46] Struyf E, Conley D J. Silica: an essential nutrient in wetland biogeochemistry. Frontiers in Ecology and the Environment, 2009, 7(2): 88–94
[47] Carlisle E M.In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick. The Journal of Nutrition, 1976, 106: 478–484
[48] Van Dyck K, Van Cauwenbergh R, Robberecht H, . Bioavailability of silicon from food and food supplements. Fresenius’ Journal of Analytical Chemistry, 1999, 363(5-6): 541–544
[49] Carlisle E M.Silicon: an essential element for the chick. Science, 1972, 178(4061): 619–621
[50] Müller W E G, Boreiko A, Wang X H, . Morphogenetic activity of silica and bio-silica on the expression of genes controlling biomineralization using SaOS-2 cells. Calcified Tissue International, 2007, 81(5): 382–393
[51] Aldinger G, Herr G, Küsswetter W, . Bone morphogenetic protein: a review. International Orthopaedics, 1991, 15(2): 169–177
[52] Kamegai A, Tanabe T, Nagahara K, . Pathologic and enzyme histochemical studies on bone formation induced by bone morphogenetic protein in mouse muscle tissue. Acta Histochemica, 1990, 89(1): 25–35
[53] Chung C-H, Golub E E, Forbes E, . Mechanism of action of β-glycerophosphate on bone cell mineralization. Calcified Tissue International, 1992, 51(4): 305–311
[54] Schwarz K, Milne D B. Growth-promoting effects of silicon in rats. Nature , 1972, 239(5371): 333–334
[55] Borsje M A, Ren Y, de Haan-Visser H W, . Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells. The Angle Orthodontist, 2010, 80(3): 498–503
[56] Simonet W S, Lacey D L, Dunstan C R, . Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997, 89(2): 309–319
[57] Wang J C, Hemavathy K, Charles W, . Osteosclerosis in idiopathic myelofibrosis is related to the overproduction of osteoprotegerin (OPG). Experimental Hematology, 2004, 32(10): 905–910
[58] Lane N E, Yao W. Developments in the scientific understanding of osteoporosis. Arthritis Research & Therapy, 2009, 11(3): 228 (8 pages)
[59] W?hler F. Ueber künstliche Bildung des Harnstoffs. Annalen der Physik, 1828 , 88(2): 253–256 (in German)
[60] Pasteur L. Mémoire sur la fermentation appelée lactique. Mémoires de la Société (Royale) des Sciences, de l’Agriculture et des Arts à Lille, 1857, 5: 13–26 (in French)10.1016/j.exphem.2004.07.006
[61] Hoppe-Seyler E F. Preface. Zeitschrift für Physiologische Chemie, 1877, 1: 1 (in German)
[62] Spallanzani L, Senebier J. Experiences sur la Digestion de l’Homme et de Différentes especes d’Animaux. Geneve: Chez Barthe?lemi Chirol, 1784 (in French)10.1002/andp.18280880206
[63] Müller W E G, Wang X H, Diehl-Seifert B, . Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomaterialia, 2011, 7(6): 2661–2671
[64] Aoba T, Fukae M, Tanabe T, . Selective adsorption of porcine-amelogenins onto hydroxyapatite and their inhibitory activity on hydroxyapatite growth in supersaturated solutions. Calcified Tissue International, 1987, 41(5): 281–289
[65] Carlisle E M.Silicon as an essential trace element in animal nutrition. In: Ciba Foundation Symposium 121. Wiley, Chichester, UK , 1986, 123–139