[1] St?ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range.
Journal of Colloid and Interface Science, 1968, 26(1): 62–69
10.1016/0021-9797(68)90272-5[2] Brinker C J, Scherrer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing.
London:
Academic Press, 1990
[3] Hench L L, West J K. The sol-gel process. Chemical Reviews
, 1990, 90(1): 33–72
[4] B?uerlein E. Biomineralization.
Cambridge: Wiley-VCH, 2004
10.1002/3527604138[5] Müller W E G. Molecular phylogeny of metazoa (animals): Monophyletic origin.
Naturwissenschaften, 1995, 82(7): 321–329
[6] Müller W E G. Molecular phylogeny of Eumetazoa: genes in sponges (Porifera) give evidence for monophyly of animals.
Progress in Molecular and Subcellular Biology, 1998, 19: 89–132
[7] Müller W E G.Review: How was metazoan threshold crossed?
The hypothetical Urmetazoa. Comparative Biochemistry and Physiology
, 2001, 129(2-3): 433–460
[8] Wang X H, Zhang X H, Schr?der H C,
. Giant basal spicule from the deep-sea glass sponge
Monorhaphis chuni: synthesis of the largest bio-silica structure on Earth by silicatein.
Frontiers of Materials Science in China, 2009, 3(3): 226–240
[9] Wang X, Wiens M, Schr?der H C,
. Morphology of sponge spicules: silicatein a structural protein for bio-silica formation.
Advanced Engineering Materials, 2010, 12(9): B422–B437
[10] Simpson T L. The Cell Biology of Sponges.
New York:
Springer-Verlag, 1984
[11] Sandford F. Physical and chemical analysis of the siliceous skeleton in six sponges of two groups (demospongiae and hexactinellida).
Microscopy Research and Technique , 2003, 62(4): 336–355
[12] Shimizu K, Cha J, Stucky G D,
. Silicatein α: Cathepsin L-like protein in sponge biosilica.
Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(11): 6234–6238
[13] Perry C C, Belton D, Shafran K. Studies of biosilicas; structural aspects, chemical principles, model studies and the future.
Progress in Molecular and Subcellular Biology, 2003, 33: 269–299
[14] Iler R K. The Chemistry of Silica.
New York:
John Wiley & Sons, 1979
[15] Perry C C. Silicification: the process by which organisms capture and mineralize silica.
Reviews in Mineralogy and Geochemistry, 2003, 54(1): 291–327
[16] Cha J N, Shimizu K, Zhou Y,
. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro.
Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(2): 361–365
[17] Weaver J, Morse D E. Molecular biology of demosponge axial filaments and their roles in biosilification.
Microscopy Research and Technique, 2003, 62(4): 356–367
[18] Krasko A, Lorenz B, Batel R,
. Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin.
European Journal of Biochemistry, 2000, 267(15): 4878–4887
[19] Krasko A, Gamulin V, Seack J,
. Cathepsin, a major protease of the marine sponge Geodia cydonium: purification of the enzyme and molecular cloning of cDNA.
Molecular Marine Biology and Biotechnology , 1997, 6(4): 296–307
[20] Schr?der H C, Perovi?-Ottstadt S, Wiens M,
. Differentiation capacity of the epithelial cells in the sponge
Suberites domuncula.
Cell and Tissue Research, 2004, 316(2): 271–280
[21] Schr?der H C, Perovi?-Ottstadt S, Grebenjuk V A,
.. Biosilica formation in spicules of the sponge
Suberites domuncula: synchronous expression of a gene cluster.
Genomics, 2005, 85(6): 666–678
[22] Müller W E G, Belikov S I, Tremel W,
. Siliceous spicules in marine demosponges (
example Suberites domuncula).
Micron, 2006, 37(2): 107–120
[23] Kaluzhnaya O V, Belikov S I, Schr?der H C,
. Dynamics of skeleton formation in the Lake Baikal sponge
Lubomirskia baicalensis.
Part II. Molecular biological studies. Naturwissenschaften , 2005, 92(3): 134–138
[24] Wiens M, Belikov S I, Kaluzhnaya O V,
. Molecular control of serial module formation along the apical-basal axis in the sponge
Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi.
Development Genes and Evolution, 2006, 216(5): 229–242
[25] Krasko A, Schr?der H C, Batel R,
. Iron induces proliferation and morphogenesis in primmorphs from the marine sponge
Suberites domuncula.
DNA and Cell Biology , 2002, 21(1): 67–80
[26] Müller W E G, Krasko A, Le Pennec G,
. Biochemistry and cell biology of silica formation in sponges.
Microscopy Research and Technique, 2003, 62: 368–377
[27] Müller W E G, Rothenberger M, Boreiko A,
. Formation of siliceous spicules in the marine demosponge
Suberites domuncula.
Cell and Tissue Research, 2005, 321(2): 285–297
[28] Tao K, Stearns N A, Dong J,
. The proregion of cathepsin L is required for proper folding, stability and ER exit.
Archives of Biochemistry and Biophysics, 1994, 311(1): 19–27
[29] Schr?der H C, Wiens M, Schlo?macher U,
. Silicatein-mediated polycondensation of orthosilicic acid: modeling of catalytic mechanism involving ring formation.
Silicon, 2011,
10.1007/s12633-010-9057-4 (in press)
[30] Schr?der H C,Krasko A, Le Pennec G,
. Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge
Suberites domuncula.
Progress in Molecular and Subcellular Biology, 2003, 33: 249–268
[31] Sly W S, Hu P Y. Human carbonic anhydrases and carbonic anhydrase deficiencies.
Annual Review of Biochemistry, 1995, 64: 375–401
[32] Müller W E G, Schr?der H C, Loren B,
. Silicatein-mediated synthesis of amorphous silicates and siloxanes and use thereof.
European Patent, No. EP 1320624, 2000-
07-
28[33] Müller W E G, Schr?der H C, Krakso A. Decomposition and modification of silicate and silicone by silicase and use of the reversible enzyme.
US Patent, No. US 2007218044, 2007-
09-
20[34] Sun Q, Vrieling E G, van Santen R A,
. Bioinspired synthesis of mesoporous silicas.
Current Opinion in Solid State and Materials Science , 2004, 8(2): 111–120
[35] Schr?der H C, Brandt D, Schlo?macher U,
. Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine).
Naturwissenschaften, 2007, 94(5): 339–359
[36] Müller W E G, Wang X M, Belikov S I,
. Formation of siliceous spicules in demosponges: example
Suberites domuncula. In:
B?uerlein E, ed. Handbook of Biomineralization, Vol. 1: Biological Aspects and Structure Formation. Weinheim: Wiley-VCH, 2007, 59–82
[37] Schr?der H C, Wang X H, Tremel W,
. Biofabrication of biosilica-glass by living organisms. Natural Product Reports
, 2008, 25(3): 455–474
[38] Müller W E G, Wang X H, Cui F Z,
. Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials.
Applied Microbiology and Biotechnology, 2009, 83(3): 397–413
[39] Wiens M, Wang X, Natalio F,
. Bioinspired fabrication of bio-silica-based bone-substitution materials.
Advanced Engineering Materials, 2010, 12(9): B438–B450
[40] Hench L L, Wilson J.Surface-active biomaterials.
Science, 1984, 226(4675): 630–636
[41] Yamamuro T, Hench L L, Wilson J. Handbook on Bioactive Ceramics, vol. I: Bioactive Glasses and Glass-Ceramics.
Boca Raton, FL: CRC Press, 1990
[42] Schr?der H C, Boreiko O, Krasko A,
. Mineralisation of SaOS-2 cells on enzymatically (silicatein) modified bioactive osteoblast-stimulating surfaces.
Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005, 75B(2): 387–392
[43] Curnow P, Kisailus D, Morse D E. Biocatalytic synthesis of poly(l-lactide) by native and recombinant forms of the silicatein enzymes.
Angewandte Chemie International Edition, 2006, 45(4): 613–616
[44] Wiens M, Wang X H, Schr?der H C,
. The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells.
Biomaterials, 2010, 31(30): 7716–7725
[45] Wiens M, Wang X H, Schlo?macher U,
. Osteogenic potential of bio-silica on human osteoblast-like (SaOS-2) cells.
Calcified Tissue International, 2010, 87(6): 513–524
[46] Struyf E, Conley D J. Silica: an essential nutrient in wetland biogeochemistry.
Frontiers in Ecology and the Environment, 2009, 7(2): 88–94
[47] Carlisle E M.
In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick.
The Journal of Nutrition, 1976, 106: 478–484
[48] Van Dyck K, Van Cauwenbergh R, Robberecht H,
. Bioavailability of silicon from food and food supplements.
Fresenius’ Journal of Analytical Chemistry, 1999, 363(5-6): 541–544
[49] Carlisle E M.Silicon: an essential element for the chick.
Science, 1972, 178(4061): 619–621
[50] Müller W E G, Boreiko A, Wang X H,
. Morphogenetic activity of silica and bio-silica on the expression of genes controlling biomineralization using SaOS-2 cells.
Calcified Tissue International, 2007, 81(5): 382–393
[51] Aldinger G, Herr G, Küsswetter W,
. Bone morphogenetic protein: a review.
International Orthopaedics, 1991, 15(2): 169–177
[52] Kamegai A, Tanabe T, Nagahara K,
. Pathologic and enzyme histochemical studies on bone formation induced by bone morphogenetic protein in mouse muscle tissue.
Acta Histochemica, 1990, 89(1): 25–35
[53] Chung C-H, Golub E E, Forbes E,
. Mechanism of action of β-glycerophosphate on bone cell mineralization.
Calcified Tissue International, 1992, 51(4): 305–311
[54] Schwarz K, Milne D B. Growth-promoting effects of silicon in rats.
Nature , 1972, 239(5371): 333–334
[55] Borsje M A, Ren Y, de Haan-Visser H W,
. Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells.
The Angle Orthodontist, 2010, 80(3): 498–503
[56] Simonet W S, Lacey D L, Dunstan C R,
. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density.
Cell, 1997, 89(2): 309–319
[57] Wang J C, Hemavathy K, Charles W,
. Osteosclerosis in idiopathic myelofibrosis is related to the overproduction of osteoprotegerin (OPG).
Experimental Hematology, 2004, 32(10): 905–910
[58] Lane N E, Yao W. Developments in the scientific understanding of osteoporosis.
Arthritis Research & Therapy, 2009, 11(3): 228 (8 pages)
[59] W?hler F. Ueber künstliche Bildung des Harnstoffs.
Annalen der Physik, 1828 , 88(2): 253–256 (in German)
[60] Pasteur L. Mémoire sur la fermentation appelée lactique.
Mémoires de la Société (Royale) des Sciences, de l’Agriculture et des Arts à Lille, 1857, 5: 13–26 (in French)
10.1016/j.exphem.2004.07.006[61] Hoppe-Seyler E F. Preface.
Zeitschrift für Physiologische Chemie, 1877, 1: 1 (in German)
[62] Spallanzani L, Senebier J. Experiences sur la Digestion de l’Homme et de Différentes especes d’Animaux.
Geneve: Chez Barthe?lemi Chirol, 1784 (in French)
10.1002/andp.18280880206[63] Müller W E G, Wang X H, Diehl-Seifert B,
. Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro.
Acta Biomaterialia, 2011, 7(6): 2661–2671
[64] Aoba T, Fukae M, Tanabe T,
. Selective adsorption of porcine-amelogenins onto hydroxyapatite and their inhibitory activity on hydroxyapatite growth in supersaturated solutions.
Calcified Tissue International, 1987, 41(5): 281–289
[65] Carlisle E M.Silicon as an essential trace element in animal nutrition. In:
Ciba Foundation Symposium 121. Wiley, Chichester, UK , 1986, 123–139