Biosilica-glass formation using enzymes from sponges [silicatein]: Basic aspects and application in biomedicine [bone reconstitution material and osteoporosis]

Shun-Feng WANG1, Xiao-Hong WANG1(), Lu GAN1, Matthias WIENS2, Heinz C. SCHR?DER2, Werner E. G. MüLLER2()

PDF(1577 KB)
PDF(1577 KB)
Front. Mater. Sci. ›› 2011, Vol. 5 ›› Issue (3) : 266-281. DOI: 10.1007/s11706-011-0145-1
REVIEW ARTICLE
REVIEW ARTICLE

Biosilica-glass formation using enzymes from sponges [silicatein]: Basic aspects and application in biomedicine [bone reconstitution material and osteoporosis]

  • Shun-Feng WANG1, Xiao-Hong WANG1(), Lu GAN1, Matthias WIENS2, Heinz C. SCHR?DER2, Werner E. G. MüLLER2()
Author information +
History +

Abstract

In the last 15 years biomineralization, in particular biosilicification (i.e., the formation of biogenic silica, SiO2), has become an exciting source of inspiration for the development of novel bionic approaches, following “Nature as model”. Among the silica forming organisms there are the sponges that have the unique property to catalyze their silica skeletons by a specific enzyme termed silicatein. In the present review we summarize the present state of knowledge on silicatein-mediated “biosilica” formation in marine sponges, the involvement of further molecules in silica metabolism and their potential application in biomedicine. Recent advancements in the production of bone replacement material and in the potential use as a component in the treatment of osteoporosis are highlighted.

Keywords

biomineralization / biosilica / medicine / biomaterials / osteoporosis

Cite this article

Download citation ▾
Shun-Feng WANG, Xiao-Hong WANG, Lu GAN, Matthias WIENS, Heinz C. SCHR?DER, Werner E. G. MüLLER. Biosilica-glass formation using enzymes from sponges [silicatein]: Basic aspects and application in biomedicine [bone reconstitution material and osteoporosis]. Front Mater Sci, 2011, 5(3): 266‒281 https://doi.org/10.1007/s11706-011-0145-1

References

[1] St?ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 1968, 26(1): 62–69 10.1016/0021-9797(68)90272-5
[2] Brinker C J, Scherrer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing.London: Academic Press, 1990
[3] Hench L L, West J K. The sol-gel process. Chemical Reviews, 1990, 90(1): 33–72
[4] B?uerlein E. Biomineralization. Cambridge: Wiley-VCH, 200410.1002/3527604138
[5] Müller W E G. Molecular phylogeny of metazoa (animals): Monophyletic origin. Naturwissenschaften, 1995, 82(7): 321–329
[6] Müller W E G. Molecular phylogeny of Eumetazoa: genes in sponges (Porifera) give evidence for monophyly of animals. Progress in Molecular and Subcellular Biology, 1998, 19: 89–132
[7] Müller W E G.Review: How was metazoan threshold crossed? The hypothetical Urmetazoa. Comparative Biochemistry and Physiology, 2001, 129(2-3): 433–460
[8] Wang X H, Zhang X H, Schr?der H C, . Giant basal spicule from the deep-sea glass sponge Monorhaphis chuni: synthesis of the largest bio-silica structure on Earth by silicatein. Frontiers of Materials Science in China, 2009, 3(3): 226–240
[9] Wang X, Wiens M, Schr?der H C, . Morphology of sponge spicules: silicatein a structural protein for bio-silica formation. Advanced Engineering Materials, 2010, 12(9): B422–B437
[10] Simpson T L. The Cell Biology of Sponges.New York: Springer-Verlag, 1984
[11] Sandford F. Physical and chemical analysis of the siliceous skeleton in six sponges of two groups (demospongiae and hexactinellida). Microscopy Research and Technique , 2003, 62(4): 336–355
[12] Shimizu K, Cha J, Stucky G D, . Silicatein α: Cathepsin L-like protein in sponge biosilica. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(11): 6234–6238
[13] Perry C C, Belton D, Shafran K. Studies of biosilicas; structural aspects, chemical principles, model studies and the future. Progress in Molecular and Subcellular Biology, 2003, 33: 269–299
[14] Iler R K. The Chemistry of Silica.New York: John Wiley & Sons, 1979
[15] Perry C C. Silicification: the process by which organisms capture and mineralize silica. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 291–327
[16] Cha J N, Shimizu K, Zhou Y, . Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(2): 361–365
[17] Weaver J, Morse D E. Molecular biology of demosponge axial filaments and their roles in biosilification. Microscopy Research and Technique, 2003, 62(4): 356–367
[18] Krasko A, Lorenz B, Batel R, . Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. European Journal of Biochemistry, 2000, 267(15): 4878–4887
[19] Krasko A, Gamulin V, Seack J, . Cathepsin, a major protease of the marine sponge Geodia cydonium: purification of the enzyme and molecular cloning of cDNA.Molecular Marine Biology and Biotechnology , 1997, 6(4): 296–307
[20] Schr?der H C, Perovi?-Ottstadt S, Wiens M, . Differentiation capacity of the epithelial cells in the sponge Suberites domuncula. Cell and Tissue Research, 2004, 316(2): 271–280
[21] Schr?der H C, Perovi?-Ottstadt S, Grebenjuk V A, .. Biosilica formation in spicules of the sponge Suberites domuncula: synchronous expression of a gene cluster. Genomics, 2005, 85(6): 666–678
[22] Müller W E G, Belikov S I, Tremel W, . Siliceous spicules in marine demosponges (example Suberites domuncula). Micron, 2006, 37(2): 107–120
[23] Kaluzhnaya O V, Belikov S I, Schr?der H C, . Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part II. Molecular biological studies. Naturwissenschaften , 2005, 92(3): 134–138
[24] Wiens M, Belikov S I, Kaluzhnaya O V, . Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Development Genes and Evolution, 2006, 216(5): 229–242
[25] Krasko A, Schr?der H C, Batel R, . Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula.DNA and Cell Biology , 2002, 21(1): 67–80
[26] Müller W E G, Krasko A, Le Pennec G, . Biochemistry and cell biology of silica formation in sponges. Microscopy Research and Technique, 2003, 62: 368–377
[27] Müller W E G, Rothenberger M, Boreiko A, . Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell and Tissue Research, 2005, 321(2): 285–297
[28] Tao K, Stearns N A, Dong J, . The proregion of cathepsin L is required for proper folding, stability and ER exit. Archives of Biochemistry and Biophysics, 1994, 311(1): 19–27
[29] Schr?der H C, Wiens M, Schlo?macher U, . Silicatein-mediated polycondensation of orthosilicic acid: modeling of catalytic mechanism involving ring formation. Silicon, 2011,10.1007/s12633-010-9057-4 (in press)
[30] Schr?der H C,Krasko A, Le Pennec G, . Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. Progress in Molecular and Subcellular Biology, 2003, 33: 249–268
[31] Sly W S, Hu P Y. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annual Review of Biochemistry, 1995, 64: 375–401
[32] Müller W E G, Schr?der H C, Loren B, . Silicatein-mediated synthesis of amorphous silicates and siloxanes and use thereof. European Patent, No. EP 1320624, 2000-07-28
[33] Müller W E G, Schr?der H C, Krakso A. Decomposition and modification of silicate and silicone by silicase and use of the reversible enzyme. US Patent, No. US 2007218044, 2007-09-20
[34] Sun Q, Vrieling E G, van Santen R A, . Bioinspired synthesis of mesoporous silicas. Current Opinion in Solid State and Materials Science , 2004, 8(2): 111–120
[35] Schr?der H C, Brandt D, Schlo?macher U, . Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Naturwissenschaften, 2007, 94(5): 339–359
[36] Müller W E G, Wang X M, Belikov S I, . Formation of siliceous spicules in demosponges: example Suberites domuncula. In: B?uerlein E, ed. Handbook of Biomineralization, Vol. 1: Biological Aspects and Structure Formation. Weinheim: Wiley-VCH, 2007, 59–82
[37] Schr?der H C, Wang X H, Tremel W, . Biofabrication of biosilica-glass by living organisms. Natural Product Reports, 2008, 25(3): 455–474
[38] Müller W E G, Wang X H, Cui F Z, . Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials. Applied Microbiology and Biotechnology, 2009, 83(3): 397–413
[39] Wiens M, Wang X, Natalio F, . Bioinspired fabrication of bio-silica-based bone-substitution materials. Advanced Engineering Materials, 2010, 12(9): B438–B450
[40] Hench L L, Wilson J.Surface-active biomaterials. Science, 1984, 226(4675): 630–636
[41] Yamamuro T, Hench L L, Wilson J. Handbook on Bioactive Ceramics, vol. I: Bioactive Glasses and Glass-Ceramics. Boca Raton, FL: CRC Press, 1990
[42] Schr?der H C, Boreiko O, Krasko A, . Mineralisation of SaOS-2 cells on enzymatically (silicatein) modified bioactive osteoblast-stimulating surfaces. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005, 75B(2): 387–392
[43] Curnow P, Kisailus D, Morse D E. Biocatalytic synthesis of poly(l-lactide) by native and recombinant forms of the silicatein enzymes. Angewandte Chemie International Edition, 2006, 45(4): 613–616
[44] Wiens M, Wang X H, Schr?der H C, . The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells. Biomaterials, 2010, 31(30): 7716–7725
[45] Wiens M, Wang X H, Schlo?macher U, . Osteogenic potential of bio-silica on human osteoblast-like (SaOS-2) cells. Calcified Tissue International, 2010, 87(6): 513–524
[46] Struyf E, Conley D J. Silica: an essential nutrient in wetland biogeochemistry. Frontiers in Ecology and the Environment, 2009, 7(2): 88–94
[47] Carlisle E M.In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick. The Journal of Nutrition, 1976, 106: 478–484
[48] Van Dyck K, Van Cauwenbergh R, Robberecht H, . Bioavailability of silicon from food and food supplements. Fresenius’ Journal of Analytical Chemistry, 1999, 363(5-6): 541–544
[49] Carlisle E M.Silicon: an essential element for the chick. Science, 1972, 178(4061): 619–621
[50] Müller W E G, Boreiko A, Wang X H, . Morphogenetic activity of silica and bio-silica on the expression of genes controlling biomineralization using SaOS-2 cells. Calcified Tissue International, 2007, 81(5): 382–393
[51] Aldinger G, Herr G, Küsswetter W, . Bone morphogenetic protein: a review. International Orthopaedics, 1991, 15(2): 169–177
[52] Kamegai A, Tanabe T, Nagahara K, . Pathologic and enzyme histochemical studies on bone formation induced by bone morphogenetic protein in mouse muscle tissue. Acta Histochemica, 1990, 89(1): 25–35
[53] Chung C-H, Golub E E, Forbes E, . Mechanism of action of β-glycerophosphate on bone cell mineralization. Calcified Tissue International, 1992, 51(4): 305–311
[54] Schwarz K, Milne D B. Growth-promoting effects of silicon in rats. Nature , 1972, 239(5371): 333–334
[55] Borsje M A, Ren Y, de Haan-Visser H W, . Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells. The Angle Orthodontist, 2010, 80(3): 498–503
[56] Simonet W S, Lacey D L, Dunstan C R, . Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997, 89(2): 309–319
[57] Wang J C, Hemavathy K, Charles W, . Osteosclerosis in idiopathic myelofibrosis is related to the overproduction of osteoprotegerin (OPG). Experimental Hematology, 2004, 32(10): 905–910
[58] Lane N E, Yao W. Developments in the scientific understanding of osteoporosis. Arthritis Research & Therapy, 2009, 11(3): 228 (8 pages)
[59] W?hler F. Ueber künstliche Bildung des Harnstoffs. Annalen der Physik, 1828 , 88(2): 253–256 (in German)
[60] Pasteur L. Mémoire sur la fermentation appelée lactique. Mémoires de la Société (Royale) des Sciences, de l’Agriculture et des Arts à Lille, 1857, 5: 13–26 (in French)10.1016/j.exphem.2004.07.006
[61] Hoppe-Seyler E F. Preface. Zeitschrift für Physiologische Chemie, 1877, 1: 1 (in German)
[62] Spallanzani L, Senebier J. Experiences sur la Digestion de l’Homme et de Différentes especes d’Animaux. Geneve: Chez Barthe?lemi Chirol, 1784 (in French)10.1002/andp.18280880206
[63] Müller W E G, Wang X H, Diehl-Seifert B, . Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomaterialia, 2011, 7(6): 2661–2671
[64] Aoba T, Fukae M, Tanabe T, . Selective adsorption of porcine-amelogenins onto hydroxyapatite and their inhibitory activity on hydroxyapatite growth in supersaturated solutions. Calcified Tissue International, 1987, 41(5): 281–289
[65] Carlisle E M.Silicon as an essential trace element in animal nutrition. In: Ciba Foundation Symposium 121. Wiley, Chichester, UK , 1986, 123–139
AI Summary AI Mindmap
PDF(1577 KB)

Accesses

Citations

Detail

Sections
Recommended

/