Synthesis temperature dependence of morphologies and properties of cobalt oxide and silicon nanocrystals

Akimasa KOJI1,2, Javed IQBAL1, Rong-Hai YU1, Zheng-Jun ZHANG1()

PDF(687 KB)
PDF(687 KB)
Front. Mater. Sci. ›› 2011, Vol. 5 ›› Issue (3) : 311-321. DOI: 10.1007/s11706-011-0143-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Synthesis temperature dependence of morphologies and properties of cobalt oxide and silicon nanocrystals

  • Akimasa KOJI1,2, Javed IQBAL1, Rong-Hai YU1, Zheng-Jun ZHANG1()
Author information +
History +

Abstract

Cobalt and cobalt oxide nanocrystals were synthesized on Si substrates from aqueous cobalt nitrate [Co(NO3)2·6H2O] powder via chemical vapor deposition method. Scanning electron microscope, field emission scanning electron microscope, and transmission electron microscope observations show different morphologies, such as continuous films, nano-bars, nano-dices, and nano-strings, depending on the synthesis temperature. The crystal structure characterization was conducted using X-ray diffraction methods. Furthermore, the properties of the samples were characterized using Raman spectroscopic analysis and vibrating sample magnetometer. The morpholo- gy change was discussed in terms of synthesis environments and chemical interactions between cobalt, oxygen, and silicon.

Keywords

cobalt oxide / nanostructure / temperature dependence / magnetic property

Cite this article

Download citation ▾
Akimasa KOJI, Javed IQBAL, Rong-Hai YU, Zheng-Jun ZHANG. Synthesis temperature dependence of morphologies and properties of cobalt oxide and silicon nanocrystals. Front Mater Sci, 2011, 5(3): 311‒321 https://doi.org/10.1007/s11706-011-0143-3

References

[1] Heli H, Yadegari H. Nanoflakes of the cobaltous oxide, CoO: Synthesis and characterization. Electrochimica Acta , 2010, 55(6): 2139-2148 10.1016/j.electacta.2009.11.047
[2] Ganguly T A A, Ahmed J, Ganguli A K, . Arabian Journal of Chemistry, 2010
[3] Wade T L, Wegrowe J-E. Template synthesis of nanomaterials. The European Physical Journal- Applied Physics , 2005, 29(1): 3-22 10.1051/epjap:2005001
[4] Bréchignac C, Houdy P, Lahmani M,eds. Nanomaterials and Nanochemistry. Berlin: Springer-Verlag, Berlin Heidelberg, 2007
[5] Weller H. Self-organized superlattices of nanoparticles. Angewandte Chemie International Edition in English , 1996, 35(10): 1079-1081 10.1002/anie.199610791
[6] Rodríguez J A, Fernández-García M, eds. Part Introduction, in Synthesis, Properties, and Applications of Oxide Nanomaterials. Hoboken, NJ , USA: John Wiley & Sons, Inc.,2006
[7] Shen G X, Chen Y C, Lin C J. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method. Thin Solid Films , 2005, 489(1-2): 130-136 10.1016/j.tsf.2005.05.016
[8] Heli H, Jabbari A, Majdi S, . Electrooxidation and determination of some non-steroidal anti-inflammatory drugs on nanoparticles of Ni-curcumin-complex-modified electrode. Journal of Solid State Electrochemistry , 2009, 13(12): 1951-1958 10.1007/s10008-008-0758-1
[9] Heli H, Jabbari A, Zarghan M, . Copper nanoparticles-carbon microparticles nanocomposite for electrooxidation and sensitive detection of sotalol. Sensors and Actuators B: Chemical , 2009, 140(1): 245-251 10.1016/j.snb.2009.04.021
[10] Wronski Z S. Materials for rechargeable batteries and clean hydrogen energy sources. International Materials Reviews , 2001, 46(1): 1-49 10.1179/095066001101528394
[11] Hosono E, Fujihara S, Honma I, . Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property. Journal of Power Sources , 2006, 158(1): 779-783 10.1016/j.jpowsour.2005.09.052
[12] Barrera E, González I, Viveros T. A new cobalt oxide electrodeposit bath for solar absorbers. Solar Energy Materials and Solar Cells , 1998, 51(1): 69-82 10.1016/S0927-0248(97)00209-2
[13] Casella I G, Guascito M R. Electrochemical preparation of a composite gold-cobalt electrode and its electrocatalytic activity in alkaline medium. Electrochimica Acta , 1999, 45(7): 1113-1120 10.1016/S0013-4686(99)00315-1
[14] Jyoko Y, Kashiwabara S, Hayashi Y. Preparation of giant magnetoresistance Co/Cu multilayers by electrodeposition. Journal of The Electrochemical Society , 1997, 144(1): L5-L8 10.1149/1.1837354
[15] Phase D, Choudhary R J, Ganesan V, . Manipulation of magnetic nanostructures through low temperature metal-oxygen chemistry: Co/CoO exchange biased nanodonuts and Co nanotips. Solid State Communications , 2009, 149(7-8): 277-280 10.1016/j.ssc.2008.12.019
[16] Kadam L D, Pawar S H, Patil P S. Studies on ionic intercalation properties of cobalt oxide thin films prepared by spray pyrolysis technique. Materials Chemistry and Physics , 2001, 68(1-3): 280-282 10.1016/S0254-0584(00)00365-5
[17] Thokale R N, Patil P S, Dongare M B. Double-exposure holographic interferometry technique used for characterization of electrodeposited cobalt oxide thin films. Materials Chemistry and Physics , 2002, 74(2): 143-149 10.1016/S0254-0584(01)00470-9
[18] Trasatti S. Physical electrochemistry of ceramic oxides. Electrochimica Acta , 1991, 36(2): 225-241 10.1016/0013-4686(91)85244-2
[19] Schumacher L C, Holzhueter I B, Hill I R, . Semiconducting and electrocatalytic properties of sputtered cobalt oxide films. Electrochimica Acta , 1990, 35(6): 975-984 10.1016/0013-4686(90)90030-4
[20] Barbero C, Planes G A, Miras M C. Redox coupled ion exchange in cobalt oxide films. Electrochemistry Communications , 2001, 3(3): 113-116 10.1016/S1388-2481(01)00107-2
[21] Casella I G, Gatta M. Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. Journal of Electroanalytical Chemistry , 2002, 534(1): 31-38 10.1016/S0022-0728(02)01100-2
[22] Casella I G. Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)-tartrate complexes. Journal of Electroanalytical Chemistry , 2002, 520(1-2): 119-125 10.1016/S0022-0728(02)00642-3
[23] Buratti S, Brunetti B, Mannino S. Amperometric detection of carbohydrates and thiols by using a glassy carbon electrode coated with Co oxide/multi-wall carbon nanotubes catalytic system. Talanta , 2008, 76(2): 454-457 10.1016/j.talanta.2008.03.031
[24] Jia W, Guo M, Zheng Z, . Electrocatalytic oxidation and reduction of H2O2 on vertically aligned Co3O4 nanowalls electrode: Toward H2O2 detection. Journal of Electroanalytical Chemistry , 2009, 625(1): 27-32 10.1016/j.jelechem.2008.09.020
[25] Houshmand M, Jabbari A, Heli H, . Electrocatalytic oxidation of aspirin and acetaminophen on a cobalt hydroxide nanoparticles modified glassy carbon electrode. Journal of Solid State Electrochemistry , 2008, 12(9): 1117-1128 10.1007/s10008-007-0454-6
[26] Fan L F, Wu X Q, Guo M D, . Cobalt hydroxide film deposited on glassy carbon electrode for electrocatalytic oxidation of hydroquinone. Electrochimica Acta , 2007, 52(11): 3654-3659 10.1016/j.electacta.2006.10.027
[27] Xu C, Tian Z, Shen P, . Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochimica Acta , 2008, 53(5): 2610-2618 10.1016/j.electacta.2007.10.036
[28] Nkeng P, Koenig J-F, Gautier J L, . Enhancement of surface areas of Co3O4 and NiCo2O4 electrocatalysts prepared by spray pyrolysis. Journal of Electroanalytical Chemistry , 1996, 402(1): 81-89 10.1016/0022-0728(95)04254-7
[29] Zhu Y, Li H, Koltypin Y, . Preparation of nanosized cobalt hydroxides and oxyhydroxide assisted by sonication. Journal of Materials Chemistry , 2002, 12(3): 729-733 10.1039/b107750c
[30] Schumacher L C, Holzhueter I B, Hill I R, . Semiconducting and electrocatalytic properties of sputtered cobalt oxide films. Electrochimica Acta , 1990, 35(6): 975-984 10.1016/0013-4686(90)90030-4
[31] Da Silva L M, Boodts J F C, De Faria L A. Oxygen evolution at RuO2(x)+Co3O4(1-x) electrodes from acid solution. Electrochimica Acta , 2001, 46(9): 1369-1375 10.1016/S0013-4686(00)00716-7
[32] Jiang S P, Lin Z C, Tseung A C C. Homogeneous and heterogeneous catalytic reactions in cobalt oxide/graphite air electrodes. II. Homogeneous role of Cu(II) ions during oxygen reduction on Co3O4/graphite electrodes. Journal of The Electrochemical Society , 1990, 137(3): 764-769 10.1149/1.2086551
[33] Ni Y, Ge X, Zhang Z, . A simple reduction-oxidation route to prepare Co3O4 nanocrystals. Materials Research Bulletin , 2001, 36(13-14): 2383-2387
[34] ?vegl F, Orel B, Grabec-?vegl I, . Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route. Electrochimica Acta , 2000, 45(25-26): 4359-4371
[35] Casella I G, Guascito M R. Anodic electrodeposition of conducting cobalt oxyhydroxide films on a gold surface. XPS study and electrochemical behaviour in neutral and alkaline solution. Journal of Electroanalytical Chemistry , 1999, 476(1): 54-63 10.1016/S0022-0728(99)00366-6
[36] Schmid G, ed. Clusters and Colloids: From Theory to Applications. Weinheim: VCH, 1994
[37] Poizot P, Laruelle S, Grugeon S, . Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature , 2000, 407(6803): 496-498 10.1038/35035045
[38] Penn R L, Stone A T, Veblen D R. Defects and disorder: Probing the surface chemistry of heterogenite (CoOOH) by dissolution using hydroquinone and iminodiacetic acid. The Journal of Physical Chemistry B , 2001, 105(20): 4690-4697 10.1021/jp0039868
[39] Pralong V, Delahaye-Vidal A, Beaudoin B, . Electrochemical behavior of cobalt hydroxide used as additive in the nickel hydroxide electrode. Journal of The Electrochemical Society , 2000, 147(4): 1306-1313 10.1149/1.1393355
[40] Nemudry A, Rudolf P, Sch?llhorn R. Topotactic electrochemical redox reactions of the defect perovskite SrCoO2.5+x. Chemistry of Materials , 1996, 8(9): 2232-2238 10.1021/cm950504+
[41] Yin S, Xue W, Ding X-L, . Formation, distribution, and structures of oxygen-rich iron and cobalt oxide clusters. International Journal of Mass Spectrometry , 2009, 281(1-2): 72-78
[42] Torchio R, Meneghini C, Mobilio S, . Microstructure and magnetic properties of colloidal cobalt nano-clusters. Journal of Magnetism and Magnetic Materials , 2010, 322(21): 3565-3571 10.1016/j.jmmm.2010.07.008
[43] Pal J, Chauhan P. Study of physical properties of cobalt oxide (Co3O4) nanocrystals. Materials Characterization , 2010, 61(5): 575-579 10.1016/j.matchar.2010.02.017
[44] Ahmed J, Ahmad T, Ramanujachary K V, . Development of a microemulsion-based process for synthesis of cobalt (Co) and cobalt oxide (Co3O4) nanoparticles from submicrometer rods of cobalt oxalate. Journal of Colloid and Interface Science , 2008, 321(2): 434-441 10.1016/j.jcis.2008.01.052
[45] Luo Z, Fang Y, Zhou X, . Synthesis of highly ordered Iron/Cobalt nanowire arrays in AAO templates and their structural properties. Materials Chemistry and Physics , 2008, 107(1): 91-95 10.1016/j.matchemphys.2007.06.047
[46] Kandalkar S G, Gunjakar J L, Lokhande C D, . Synthesis of cobalt oxide interconnected flacks and nano-worms structures using low temperature chemical bath deposition. Journal of Alloys and Compounds , 2009, 478(1-2): 594-598
[47] Vickers D, Archer L A, Floyd-Smith T. Synthesis and characterization of cubic cobalt oxide nanocomposite fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2009, 348(1-3): 39-44
[48] Xu R, Wang J W, Li Q Y, . Porous cobalt oxide (Co3O4) nanorods: Facile syntheses, optical property and application in lithium-ion batteries. Journal of Solid State Chemistry , 2009, 182(11): 3177-3182 10.1016/j.jssc.2009.08.033
[49] Lou X D, Han J, Chu W F, . Synthesis and photocatalytic property of Co3O4 nanorods. Materials Science and Engineering B , 2007, 137(1-3): 268-271
[50] Duan X, Lieber C M. General synthesis of compound semiconductor nanowires. Advanced Materials , 2000, 12(4): 298-302 10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y
[51] Dai H, Wong E W, Lu Y Z, . Synthesis and characterization of carbide nanorods. Nature , 1995, 375(6534): 769-771 10.1038/375769a0
[52] Li F J, Zhang S, Kong J H, . Study of silicon dioxide nanowires grown via rapid thermal annealing of sputtered amorphous carbon films doped with Si. Nanoscience and Nanotechnology Letters , 2011, 3(2): 240-245
[53] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters , 1964, 4(5): 89-90 10.1063/1.1753975
AI Summary AI Mindmap
PDF(687 KB)

Accesses

Citations

Detail

Sections
Recommended

/