[1] Heli H, Yadegari H. Nanoflakes of the cobaltous oxide, CoO: Synthesis and characterization.
Electrochimica Acta , 2010, 55(6): 2139-2148
10.1016/j.electacta.2009.11.047[2] Ganguly T A A, Ahmed J, Ganguli A K,
. Arabian Journal of Chemistry, 2010
[3] Wade T L, Wegrowe J-E. Template synthesis of nanomaterials.
The European Physical Journal- Applied Physics , 2005, 29(1): 3-22
10.1051/epjap:2005001[4] Bréchignac C, Houdy P, Lahmani M,eds. Nanomaterials and Nanochemistry.
Berlin:
Springer-Verlag, Berlin Heidelberg, 2007
[5] Weller H. Self-organized superlattices of nanoparticles.
Angewandte Chemie International Edition in English , 1996, 35(10): 1079-1081
10.1002/anie.199610791[6] Rodríguez J A, Fernández-García M, eds. Part Introduction, in Synthesis, Properties, and Applications of Oxide Nanomaterials.
Hoboken, NJ ,
USA:
John Wiley & Sons, Inc.,2006
[7] Shen G X, Chen Y C, Lin C J. Corrosion protection of 316 L stainless steel by a TiO
2 nanoparticle coating prepared by sol-gel method.
Thin Solid Films , 2005, 489(1-2): 130-136
10.1016/j.tsf.2005.05.016[8] Heli H, Jabbari A, Majdi S,
. Electrooxidation and determination of some non-steroidal anti-inflammatory drugs on nanoparticles of Ni-curcumin-complex-modified electrode.
Journal of Solid State Electrochemistry , 2009, 13(12): 1951-1958
10.1007/s10008-008-0758-1[9] Heli H, Jabbari A, Zarghan M,
. Copper nanoparticles-carbon microparticles nanocomposite for electrooxidation and sensitive detection of sotalol.
Sensors and Actuators B: Chemical , 2009, 140(1): 245-251
10.1016/j.snb.2009.04.021[10] Wronski Z S. Materials for rechargeable batteries and clean hydrogen energy sources.
International Materials Reviews , 2001, 46(1): 1-49
10.1179/095066001101528394[11] Hosono E, Fujihara S, Honma I,
. Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property.
Journal of Power Sources , 2006, 158(1): 779-783
10.1016/j.jpowsour.2005.09.052[12] Barrera E, González I, Viveros T. A new cobalt oxide electrodeposit bath for solar absorbers.
Solar Energy Materials and Solar Cells , 1998, 51(1): 69-82
10.1016/S0927-0248(97)00209-2[13] Casella I G, Guascito M R. Electrochemical preparation of a composite gold-cobalt electrode and its electrocatalytic activity in alkaline medium.
Electrochimica Acta , 1999, 45(7): 1113-1120
10.1016/S0013-4686(99)00315-1[14] Jyoko Y, Kashiwabara S, Hayashi Y. Preparation of giant magnetoresistance Co/Cu multilayers by electrodeposition.
Journal of The Electrochemical Society , 1997, 144(1): L5-L8
10.1149/1.1837354[15] Phase D, Choudhary R J, Ganesan V,
. Manipulation of magnetic nanostructures through low temperature metal-oxygen chemistry: Co/CoO exchange biased nanodonuts and Co nanotips.
Solid State Communications , 2009, 149(7-8): 277-280
10.1016/j.ssc.2008.12.019[16] Kadam L D, Pawar S H, Patil P S. Studies on ionic intercalation properties of cobalt oxide thin films prepared by spray pyrolysis technique.
Materials Chemistry and Physics , 2001, 68(1-3): 280-282
10.1016/S0254-0584(00)00365-5[17] Thokale R N, Patil P S, Dongare M B. Double-exposure holographic interferometry technique used for characterization of electrodeposited cobalt oxide thin films.
Materials Chemistry and Physics , 2002, 74(2): 143-149
10.1016/S0254-0584(01)00470-9[18] Trasatti S. Physical electrochemistry of ceramic oxides.
Electrochimica Acta , 1991, 36(2): 225-241
10.1016/0013-4686(91)85244-2[19] Schumacher L C, Holzhueter I B, Hill I R,
. Semiconducting and electrocatalytic properties of sputtered cobalt oxide films.
Electrochimica Acta , 1990, 35(6): 975-984
10.1016/0013-4686(90)90030-4[20] Barbero C, Planes G A, Miras M C. Redox coupled ion exchange in cobalt oxide films.
Electrochemistry Communications , 2001, 3(3): 113-116
10.1016/S1388-2481(01)00107-2[21] Casella I G, Gatta M. Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions.
Journal of Electroanalytical Chemistry , 2002, 534(1): 31-38
10.1016/S0022-0728(02)01100-2[22] Casella I G. Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)-tartrate complexes.
Journal of Electroanalytical Chemistry , 2002, 520(1-2): 119-125
10.1016/S0022-0728(02)00642-3[23] Buratti S, Brunetti B, Mannino S. Amperometric detection of carbohydrates and thiols by using a glassy carbon electrode coated with Co oxide/multi-wall carbon nanotubes catalytic system.
Talanta , 2008, 76(2): 454-457
10.1016/j.talanta.2008.03.031[24] Jia W, Guo M, Zheng Z,
. Electrocatalytic oxidation and reduction of H
2O
2 on vertically aligned Co
3O
4 nanowalls electrode: Toward H
2O
2 detection.
Journal of Electroanalytical Chemistry , 2009, 625(1): 27-32
10.1016/j.jelechem.2008.09.020[25] Houshmand M, Jabbari A, Heli H,
. Electrocatalytic oxidation of aspirin and acetaminophen on a cobalt hydroxide nanoparticles modified glassy carbon electrode.
Journal of Solid State Electrochemistry , 2008, 12(9): 1117-1128
10.1007/s10008-007-0454-6[26] Fan L F, Wu X Q, Guo M D,
. Cobalt hydroxide film deposited on glassy carbon electrode for electrocatalytic oxidation of hydroquinone.
Electrochimica Acta , 2007, 52(11): 3654-3659
10.1016/j.electacta.2006.10.027[27] Xu C, Tian Z, Shen P,
. Oxide (CeO
2, NiO, Co
3O
4 and Mn
3O
4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media.
Electrochimica Acta , 2008, 53(5): 2610-2618
10.1016/j.electacta.2007.10.036[28] Nkeng P, Koenig J-F, Gautier J L,
. Enhancement of surface areas of Co
3O
4 and NiCo
2O
4 electrocatalysts prepared by spray pyrolysis.
Journal of Electroanalytical Chemistry , 1996, 402(1): 81-89
10.1016/0022-0728(95)04254-7[29] Zhu Y, Li H, Koltypin Y,
. Preparation of nanosized cobalt hydroxides and oxyhydroxide assisted by sonication.
Journal of Materials Chemistry , 2002, 12(3): 729-733
10.1039/b107750c[30] Schumacher L C, Holzhueter I B, Hill I R,
. Semiconducting and electrocatalytic properties of sputtered cobalt oxide films.
Electrochimica Acta , 1990, 35(6): 975-984
10.1016/0013-4686(90)90030-4[31] Da Silva L M, Boodts J F C, De Faria L A. Oxygen evolution at RuO
2(
x)+Co
3O
4(1-
x) electrodes from acid solution.
Electrochimica Acta , 2001, 46(9): 1369-1375
10.1016/S0013-4686(00)00716-7[32] Jiang S P, Lin Z C, Tseung A C C. Homogeneous and heterogeneous catalytic reactions in cobalt oxide/graphite air electrodes. II. Homogeneous role of Cu(II) ions during oxygen reduction on Co
3O
4/graphite electrodes.
Journal of The Electrochemical Society , 1990, 137(3): 764-769
10.1149/1.2086551[33] Ni Y, Ge X, Zhang Z,
. A simple reduction-oxidation route to prepare Co
3O
4 nanocrystals.
Materials Research Bulletin , 2001, 36(13-14): 2383-2387
[34] ?vegl F, Orel B, Grabec-?vegl I,
. Characterization of spinel Co
3O
4 and Li-doped Co
3O
4 thin film electrocatalysts prepared by the sol-gel route.
Electrochimica Acta , 2000, 45(25-26): 4359-4371
[35] Casella I G, Guascito M R. Anodic electrodeposition of conducting cobalt oxyhydroxide films on a gold surface. XPS study and electrochemical behaviour in neutral and alkaline solution.
Journal of Electroanalytical Chemistry , 1999, 476(1): 54-63
10.1016/S0022-0728(99)00366-6[36] Schmid G, ed. Clusters and Colloids: From Theory to Applications.
Weinheim:
VCH, 1994
[37] Poizot P, Laruelle S, Grugeon S,
. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
Nature , 2000, 407(6803): 496-498
10.1038/35035045[38] Penn R L, Stone A T, Veblen D R. Defects and disorder: Probing the surface chemistry of heterogenite (CoOOH) by dissolution using hydroquinone and iminodiacetic acid.
The Journal of Physical Chemistry B , 2001, 105(20): 4690-4697
10.1021/jp0039868[39] Pralong V, Delahaye-Vidal A, Beaudoin B,
. Electrochemical behavior of cobalt hydroxide used as additive in the nickel hydroxide electrode.
Journal of The Electrochemical Society , 2000, 147(4): 1306-1313
10.1149/1.1393355[40] Nemudry A, Rudolf P, Sch?llhorn R. Topotactic electrochemical redox reactions of the defect perovskite SrCoO
2.5+x.
Chemistry of Materials , 1996, 8(9): 2232-2238
10.1021/cm950504+[41] Yin S, Xue W, Ding X-L,
. Formation, distribution, and structures of oxygen-rich iron and cobalt oxide clusters.
International Journal of Mass Spectrometry , 2009, 281(1-2): 72-78
[42] Torchio R, Meneghini C, Mobilio S,
. Microstructure and magnetic properties of colloidal cobalt nano-clusters.
Journal of Magnetism and Magnetic Materials , 2010, 322(21): 3565-3571
10.1016/j.jmmm.2010.07.008[43] Pal J, Chauhan P. Study of physical properties of cobalt oxide (Co
3O
4) nanocrystals.
Materials Characterization , 2010, 61(5): 575-579
10.1016/j.matchar.2010.02.017[44] Ahmed J, Ahmad T, Ramanujachary K V,
. Development of a microemulsion-based process for synthesis of cobalt (Co) and cobalt oxide (Co
3O
4) nanoparticles from submicrometer rods of cobalt oxalate.
Journal of Colloid and Interface Science , 2008, 321(2): 434-441
10.1016/j.jcis.2008.01.052[45] Luo Z, Fang Y, Zhou X,
. Synthesis of highly ordered Iron/Cobalt nanowire arrays in AAO templates and their structural properties.
Materials Chemistry and Physics , 2008, 107(1): 91-95
10.1016/j.matchemphys.2007.06.047[46] Kandalkar S G, Gunjakar J L, Lokhande C D,
. Synthesis of cobalt oxide interconnected flacks and nano-worms structures using low temperature chemical bath deposition.
Journal of Alloys and Compounds , 2009, 478(1-2): 594-598
[47] Vickers D, Archer L A, Floyd-Smith T. Synthesis and characterization of cubic cobalt oxide nanocomposite fluids.
Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2009, 348(1-3): 39-44
[48] Xu R, Wang J W, Li Q Y,
. Porous cobalt oxide (Co
3O
4) nanorods: Facile syntheses, optical property and application in lithium-ion batteries.
Journal of Solid State Chemistry , 2009, 182(11): 3177-3182
10.1016/j.jssc.2009.08.033[49] Lou X D, Han J, Chu W F,
. Synthesis and photocatalytic property of Co
3O
4 nanorods.
Materials Science and Engineering B , 2007, 137(1-3): 268-271
[50] Duan X, Lieber C M. General synthesis of compound semiconductor nanowires.
Advanced Materials , 2000, 12(4): 298-302
10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y[51] Dai H, Wong E W, Lu Y Z,
. Synthesis and characterization of carbide nanorods.
Nature , 1995, 375(6534): 769-771
10.1038/375769a0[52] Li F J, Zhang S, Kong J H,
. Study of silicon dioxide nanowires grown via rapid thermal annealing of sputtered amorphous carbon films doped with Si.
Nanoscience and Nanotechnology Letters , 2011, 3(2): 240-245
[53] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth.
Applied Physics Letters , 1964, 4(5): 89-90
10.1063/1.1753975