In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells

Zhi HUANG1, Yan CHEN2, Qing-Ling FENG1(), Wei ZHAO3, Bo YU4(), Jing TIAN4, Song-Jian LI4, Bo-Miao LIN5

PDF(1116 KB)
PDF(1116 KB)
Front. Mater. Sci. ›› 2011, Vol. 5 ›› Issue (3) : 301-310. DOI: 10.1007/s11706-011-0142-4
RESEARCH ARTICLE
RESEARCH ARTICLE

In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells

  • Zhi HUANG1, Yan CHEN2, Qing-Ling FENG1(), Wei ZHAO3, Bo YU4(), Jing TIAN4, Song-Jian LI4, Bo-Miao LIN5
Author information +
History +

Abstract

For reconstruction of irregular bone defects, injectable biomaterials are more appropriate than the preformed biomaterials. We herein develop a biomimetic in situ-forming composite consisting of chitosan (CS) and mineralized collagen fibrils (nHAC), which has a complex hierarchical structure similar to natural bone. The CS/nHAC composites with or without mesenchymal stem cells (MSCs) are injected into cancellous bone defects at the distal end of rabbit femurs. Defects are assessed by radiographic, histological diagnosis and Raman microscopy until 12 weeks. The results show that MSCs improve the biocompatibility of CS/nHAC composites and enhance new bone formation in vivo at 12 weeks. It can be concluded that the injectable CS/nHAC composites combined with MSCs may be a novel method for reconstruction of irregular bone defects.

Keywords

mineralized collagen fibrils / in situ-forming / injectable / mesenchymal stem cells / tissue engineered bone

Cite this article

Download citation ▾
Zhi HUANG, Yan CHEN, Qing-Ling FENG, Wei ZHAO, Bo YU, Jing TIAN, Song-Jian LI, Bo-Miao LIN. In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells. Front Mater Sci, 2011, 5(3): 301‒310 https://doi.org/10.1007/s11706-011-0142-4

References

[1] Sittinger M, Hutmacher D W, Risbud M V. Current strategies for cell delivery in cartilage and bone regeneration. Current Opinion in Biotechnology , 2004, 15(5): 411–418 10.1016/j.copbio.2004.08.010
[2] Hou Q P, De Bank P A, Shakesheff K M. Injectable scaffolds for tissue regeneration. Journal of Materials Chemistry , 2004, 14(13): 1915–1923 10.1039/b401791a
[3] Kretlow J D, Young S, Klouda L, . Injectable biomaterials for regenerating complex craniofacial tissues. Advanced Materials , 2009, 21(32-33): 3368–3393 10.1002/adma.200802009
[4] Cho M H, Kim K S, Ahn H H, . Chitosan gel as an in situ-forming scaffold for rat bone marrow mesenchymal stem cells in vivo. Tissue Engineering Part A , 2008, 14(6): 1099–1108 10.1089/ten.tea.2007.0305
[5] Chenite A, Chaput C, Wang D, . Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials , 2000, 21(21): 2155–2161 10.1016/S0142-9612(00)00116-2
[6] Hoemann C D, Sun J, Legare A, . Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthritis and Cartilage , 2005, 13(4): 318–329 10.1016/j.joca.2004.12.001
[7] Guzman-Morales J, El-Gabalawy H, Pham M H, . Effect of chitosan particles and dexamethasone on human bone marrow stromal cell osteogenesis and angiogenic factor secretion. Bone , 2009, 45(4): 617–626 10.1016/j.bone.2009.06.014
[8] Ahmadi R, Burns A J, de Bruijn J D. Chitosan-based hydrogels do not induce angiogenesis. Journal of Tissue Engineering and Regenerative Medicine , 2010, 4(4): 309–315 10.1002/term.247
[9] Olszta M J, Cheng X G, Jee S S, . Bone structure and formation: A new perspective. Materials Science and Engineering R: Reports , 2007, 58(3-5): 77–116 10.1016/j.mser.2007.05.001
[10] Cui F Z, Li Y, Ge J. Self-assembly of mineralized collagen composites. Materials Science and Engineering R: Reports , 2007, 57(1-6): 1–27
[11] Zhang W, Liao S S, Cui F Z. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chemistry of Materials , 2003, 15(16): 3221–3226 10.1021/cm030080g
[12] Liao S S, Guan K, Cui F Z, . Lumbar spinal fusion with a mineralized collagen matrix and rhBMP-2 in a rabbit model. Spine , 2003, 28(17): 1954–1960 10.1097/01.BRS.0000083240.13332.F6
[13] Li X M, Feng Q L, Jiao Y F, . Collagen-based scaffolds reinforced by chitosan fibres for bone tissue engineering. Polymer International , 2005, 54(7): 1034–1040 10.1002/pi.1804
[14] Huang Z, Feng Q, Yu B, . Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite. Materials Science and Engineering C , 2011, 31(3): 683–687 10.1016/j.msec.2010.12.014
[15] Huang Z, Tian J, Yu B, . A bone-like nano-hydroxyapatite/collagen loaded injectable scaffold. Biomedical Materials , 2009, 4(5): 055005(7 pages)
[16] Huang Z, Yu B, Feng Q, . In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells. Carbohydrate Polymers , 2011, 85(1): 261–267 10.1016/j.carbpol.2011.02.029
[17] Pittenger M F, Mackay a M, Beck S C, . Multilineage potential of adult human mesenchymal stem cells. Science , 1999, 284(5411): 143–147 10.1126/science.284.5411.143
[18] Mankani M H, Kuznetsov S A, Wolfe R M, . In vivo bone formation by human bone marrow stromal cells: Reconstruction of the mouse calvarium and mandible. Stem Cells , 2006, 24(9): 2140–2149 10.1634/stemcells.2005-0567
[19] Gauthier O, Muller R, Von Stechow D, . In vivo bone regeneration with injectable calcium phosphate biomaterial: A three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials , 2005, 26(27): 5444–5453 10.1016/j.biomaterials.2005.01.072
[20] Giavaresi G, Fini M, Salvage J, . Bone regeneration potential of a soybean-based filler: experimental study in a rabbit cancellous bone defects. Journal of Materials Science: Materials in Medicine , 2010, 21(2): 615–626 10.1007/s10856-009-3870-6
[21] Yoon S J, Park K S, Kim M S, . Repair of diaphyseal bone defects with calcitriol-loaded PLGA scaffolds and marrow stromal cells. Tissue Engineering , 2007, 13(5): 1125–1133 10.1089/ten.2006.0287
[22] Kasten P, Vogel J, Geiger F, . The effect of platelet-rich plasma on healing in critical-size long-bone defects. Biomaterials , 2008, 29(29): 3983–3992 10.1016/j.biomaterials.2008.06.014
[23] Hoemann C D, Chen G P, Marchand C, . Scaffold-guided subchondral bone repair implication of neutrophils and alternatively activated arginase-1+ macrophages. The American Journal of Sports Medicine , 2010, 38(9): 1845–1856 10.1177/0363546510369547
[24] de Oliveira R C G, Leles C R, Normanha L M, . Assessments of trabecular bone density at implant sites on CT images. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontology , 2008, 105(2): 231–238 10.1016/j.tripleo.2007.08.007
[25] Kobayashi F, Ito J, Hayashi T, . A study of volumetric visualization and quantitative evaluation of bone trabeculae in helical CT. Dentomaxillofacial Radiology , 2003, 32(3): 181–185 10.1259/dmfr/28959099
[26] Shinbo J, Mainil-Varlet P, Watanabe A, . Evaluation of early tissue reactions after lumbar intertransverse process fusion using CT in a rabbit. Skeletal Radiology , 2010, 39(4): 369–373 10.1007/s00256-009-0733-7
[27] Bouxsein M L, Boyd S K, Christiansen B A, . Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. Journal of Bone and Mineral Research , 2010, 25(7): 1468–1486 10.1002/jbmr.141
[28] Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm. Journal of the Optical Society of America A: Optics, Image Science, and Vision , 1984, 1(6): 612–619 10.1364/JOSAA.1.000612
[29] Goodyear S R, Gibson L R, Skakle J M S, . A comparison of cortical and trabecular bone from C57 Black 6 mice using Raman spectroscopy. Bone , 2009, 44(5): 899–907 10.1016/j.bone.2009.01.008
[30] Aggarwal S, Pittenger M F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood , 2005, 105(4): 1815–1822 10.1182/blood-2004-04-1559
[31] Kinnaird T, Stabile E, Burnett M S, . Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation , 2004, 109(12): 1543–1549 10.1161/01.CIR.0000124062.31102.57
[32] Tatebe M, Nakamura R, Kagami H, . Differentiation of transplanted mesenchymal stem cells in a large osteochondral defect in rabbit. Cytotherapy , 2005, 7(6): 520–530 10.1080/14653240500361350
[33] Korda M, Hua J, Little N J, . The effect of mesenchymal stromal cells on the osseoinduction of impaction grafts. Tissue Engineering Part A , 2010, 16(2): 675–683 10.1089/ten.tea.2008.0643
[34] Chellat F, Tabrizian M, Dumitriu S, . In vitro and in vivo biocompatibility of chitosan-xanthan polyionic complex. Journal of Biomedical Materials Research , 2000, 51(1): 107–116 10.1002/(SICI)1097-4636(200007)51:1<107::AID-JBM14>3.0.CO;2-F
[35] Liao S S, Cui F Z. In vitro and in vivo degradation of mineralized collagen-based composite scaffold: Nanohydroxyapatite/collagen/poly(L-lactide). Tissue Engineering , 2004, 10(1-2): 73–80 10.1089/107632704322791718
[36] Li X M, Feng Q L, Liu X H, . Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials , 2006, 27(9): 1917–1923 10.1016/j.biomaterials.2005.11.013
[37] Li X M, Liu X H, Zhang G P, . Repairing 25 mm bone defect using fibres reinforced scaffolds as well as autograft bone. Bone , 2008, 43(suppl 1): S9410.1016/j.bone.2008.07.185
[38] Frassoni F, Labopin M, Bacigalupo A, . Expanded mesenchymal stem cells (MSC), co-infused with HLA identical hemopoietic stem cell transplants, reduce acute and chronic graft versus host disease: A matched pair analysis. Bone Marrow Transplantation , 2002, 29(suppl 2): S2
[39] Rasmusson I, Ringden O, Sundberg B, . Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Experimental Cell Research , 2005, 305(1): 33–41 10.1016/j.yexcr.2004.12.013
AI Summary AI Mindmap
PDF(1116 KB)

Accesses

Citations

Detail

Sections
Recommended

/