[1] Lehn J M.Supramolecular chemistry scope and perspectives — Molecules supermolecules molecular devices.
Chemica Scripta, 1988, 28(3): 237–262
[2] Lehn J M.Supramolecular chemistry: from molecular information towards self-organization and complex matter.
Reports on Progress in Physics, 2004, 67(3): 249–265
10.1088/0034-4885/67/3/R02[3] Lehn J M.Toward self-organization and complex matter.
Science, 2002, 295(5564): 2400–2403
10.1126/science.1071063[4] Granja J R, Ghadiri M R. Self-assembling peptide nanotubes.
NMR in Supramolecular Chemistry, 1999, 526: 61–66
[5] Lawrence D S, Jiang T, Levett M.Self-assembling supramolecular complexes.
Chemical Reviews, 1995, 95(6): 2229–2260
10.1021/cr00038a018[6] Lehn J M. Perspectives in supramolecular chemistry — From molecular recognition towards molecular information-processing and self-organization.
Angewandte Chemie International Edition in English, 1990, 29(11): 1304–1319
10.1002/anie.199013041[7] Prins L J, Reinhoudt D N, Timmerman P. Noncovalent synthesis using hydrogen bonding.
Angewandte Chemie International Edition, 2001, 40(13): 2382–2426
10.1002/1521-3773(20010702)40:13<2382::AID-ANIE2382>3.0.CO;2-G[8] Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry — A chemical strategy for the synthesis of nanostructures.
Science, 1991, 254(5036): 1312–1319
10.1126/science.1962191[9] Whitesides G M, Simanek E E, Mathias J P,
. Noncovalent synthesis — Using physical-organic chemistry to make aggregates.
Accounts of Chemical Research, 1995, 28(1): 37–44
10.1021/ar00049a006[10] Rosemeyer H. Nucleolipids: natural occurrence, synthesis, molecular recognition, and supramolecular assemblies as potential precursors of life and bioorganic materials.
Chemistry & Biodiversity, 2005, 2(8): 977–1062
10.1002/cbdv.200590082[11] Itojima Y, Ogawa Y, Tsuno K,
. Spontaneous formation of helical structures from phospholipid-nucleoside conjugates.
Biochemistry, 1992, 31(20): 4757–4765
10.1021/bi00135a003[12] Bombelli F B, Berti D, Milani S,
. Collective headgroup conformational transition in twisted micellar superstructures.
Soft Matter, 2008, 4(5): 1102–1113
10.1039/b800210j[13] Park S M, Lee Y S, Kim B H. Novel low-molecular-weight hydrogelators based on 2′-deoxyuridine.
Chemical Communications, 2003, (23): 2912–2913
10.1039/b311249g[14] Campins N, Dieudonné P, Grinstaff M W,
. Nanostructured assemblies from nucleotide-based amphiphiles.
New Journal of Chemistry, 2007, 31(11): 1928–1934
10.1039/b704884j[15] Fenniri H, Packiarajan M, Vidale K L,
. Helical rosette nanotubes: design, self-assembly, and characterization.
Journal of the American Chemical Society, 2001, 123(16): 3854–3855
10.1021/ja005886l[16] Fenniri H, Deng B-L, Ribbe A E,
. Entropically driven self-assembly of multichannel rosette nanotubes.
Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(Suppl 2): 6487–6492
10.1073/pnas.032527099[17] Fenniri H, Deng B L, Ribbe A E.Helical rosette nanotubes with tunable chiroptical properties.
Journal of the American Chemical Society, 2002, 124(37): 11064–11072
10.1021/ja026164s[18] Borzsonyi G, Johnson R S, Myles A J,
. Rosette nanotubes with 1.4 nm inner diameter from a tricyclic variant of the Lehn-Mascal G∧C base.
Chemical Communications, 2010, 46(35): 6527–6529
10.1039/c0cc01859g[19] Davis J T, Spada G P.Supramolecular architectures generated by self-assembly of guanosine derivatives.
Chemical Society Reviews, 2007, 36(2): 296–313
10.1039/b600282j[20] Davis J T.G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry.
Angewandte Chemie International Edition, 2004, 43(6): 668–698
10.1002/anie.200300589[21] Fragata M, Menikh A, Robert S. Salt-mediated effects in nonionic lipid bilayers constituted of digalactosyldiacylglycerol studied by ftir spectroscopy and molecular modellization.
The Journal of Physical Chemistry, 1993, 97(51): 13920–13926
10.1021/j100153a076[22] Zhang L, Rodriguez J, Raez J,
. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
Nanotechnology, 2009, 20(17): 175101 (12 pages)
[23] Wagner F, Rottem S, Held H D,
. Ether lipids in the cell membrane of Mycoplasma fermentans.
European Journal of Biochemistry, 2000, 267(20): 6276–6286
10.1046/j.1432-1327.2000.01709.x[24] Brandenburg K, Richter W, Koch M H J,
. Characterization of the nonlamellar cubic and H
II structures of lipid A from
Salmonella enterica serovar Minnesota by X-ray diffraction and freeze-fracture electron microscopy.
Chemistry and Physics of Lipids, 1998, 91(1): 53–69
10.1016/S0009-3084(97)00093-5[25] Fuhrhop J H, Schnieder P, Rosenberg J,
. The chiral bilayer effect stabilizes micellar fibers.
Journal of the American Chemical Society, 1987, 109(11): 3387–3390
10.1021/ja00245a032[26] Fuhrhop J H, Schnieder P, Boekema E,
. Lipid bilayer fibers from diastereomeric and enantiomeric N-octylaldonamides.
Journal of the American Chemical Society, 1988, 110(9): 2861–2867
10.1021/ja00217a028[27] Fuhrhop J H, Svenson S, Boekema E,
. Long-lived micellar N-alkylaldonamide fiber gels. Solid-state NMR and electron microscopic studies.
Journal of the American Chemical Society, 1990, 112(11): 4301–4312
10.1021/ja00167a029[28] Fuhrhop J H, Boettcher C.Stereochemistry and curvature effects in supramolecular organization and separation processes of micellar N-alkylaldonamide mixtures.
Journal of the American Chemical Society, 1990, 112(5): 1768–1776
10.1021/ja00161a018[29] Fuhrhop J H, Blumtritt P, Lehmann C,
. Supramolecular assemblies, a crystal structure, and a polymer of N-diacetylenic gluconamides.
Journal of the American Chemical Society, 1991, 113(19): 7437–7439
10.1021/ja00019a060[30] Koning J, Boettcher C, Winkler H,
. Magic angle (54.7-degrees) gradient and minimal-surfaces in quadruple micellar helices.
Journal of the American Chemical Society, 1993, 115(2): 693–700
10.1021/ja00055a045[31] John G, Masuda M, Okada Y,
. Nanotube formation from renewable resources via coiled nanofibers.
Advanced Materials , 2001, 13(10): 715–718
10.1002/1521-4095(200105)13:10<715::AID-ADMA715>3.0.CO;2-Z[32] John G, Jung J H, Minamikawa H,
. Morphological control of helical solid bilayers in high-axial-ratio nanostructures through binary self-assembly.
Chemistry- A European Journal, 2002, 8(23): 5494–5500
10.1002/1521-3765(20021202)8:23<5494::AID-CHEM5494>3.0.CO;2-P[33] Jung J H, John G, Masuda M,
. Self-assembly of a sugar-based gelator in water: Its remarkable diversity in gelation ability and aggregate structure.
Langmuir, 2001, 17(23): 7229–7232
10.1021/la0109516[34] Jung J H, John G, Yoshida K,
. Self-assembling structures of long-chain phenyl glucoside influenced by the introduction of double bonds.
Journal of the American Chemical Society, 2002, 124(36): 10674–10675
10.1021/ja020752o[35] Shimizu T, Masuda M. Stereochemical effect of even-odd connecting links on supramolecular assemblies made of 1-glucosamide bolaamphiphiles.
Journal of the American Chemical Society , 1997, 119(12): 2812–2818
10.1021/ja961226y[36] Nakazawa I, Masuda M, Okada Y,
. Spontaneous formation of helically twisted fibers from 2-glucosamide bolaamphiphiles: Energy-filtering transmission electron microscopic observation and even-odd effect of connecting bridge.
Langmuir, 1999, 15(14): 4757–4764
10.1021/la981714e[37] Bell P C, Bergsma M, Dolbnya I P,
. Transfection mediated by gemini surfactants: Engineered escape from the endosomal compartment.
Journal of the American Chemical Society, 2003, 125(6): 1551–1558
10.1021/ja020707g[38] Johnsson M, Wagenaar A, Engberts J. Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH.
Journal of the American Chemical Society, 2003, 125(3): 757–760
10.1021/ja028195t[39] Johnsson M, Wagenaar A, Stuart M C A,
. Sugar-based gemini surfactants with pH-dependent aggregation behavior: Vesicle-to-micelle transition, critical micelle concentration, and vesicle surface charge reversal.
Langmuir, 2003, 19(11): 4609–4618
10.1021/la0343270[40] Johnsson M, Engberts J. Novel sugar-based gemini surfactants: aggregation properties on aqueous solution.
Journal of Physical Organic Chemistry, 2004, 17(11): 934–944
10.1002/poc.817[41] Wasungu L, Scarzello M, van Dam G,
. Transfection mediated by pH-sensitive sugar-based gemini surfactants; potential for
in vivo gene therapy applications.
Journal of Molecular Medicine, 2006, 84(9): 774–784
10.1007/s00109-006-0067-z[42] Wasungu L, Stuart M C A, Scarzello M,
. Lipoplexes formed from sugar-based gemini surfactants undergo a lamellar-to-micellar phase transition at acidic pH. Evidence for a non-inverted membrane-destabilizing hexagonal phase of lipoplexes.
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2006, 1758(10): 1677–1684
10.1016/j.bbamem.2006.06.019[43] Blanzat M, Massip S, Speziale V,
. First example of helices and tubules in aqueous solution of a new fluorescent catanionic sugar surfactant.
Langmuir, 2001, 17(11): 3512–3514
10.1021/la001744t[44] Blanzat M, Perez E, Rico-Lattes I,
. Correlation between structure, aggregation behaviour and cellular toxicity of anti-HIV catanionic analogues of galactosylceramide.
Chemical Communications, 2003, (2): 244–245
10.1039/b210392n[45] Soussan E, Pasc-Banu A, Consola S,
. New catanionic triblock amphiphiles: Supramolecular organization of a sugar-derived bolaamphiphile associated with dicarboxylates.
Chemphyschem , 2005, 6(12): 2492–2494
10.1002/cphc.200500273[46] Soussan E, Mille C, Blanzat M,
. Sugar-derived tricatenar catanionic surfactant: Synthesis, self-assembly properties, and hydrophilic probe encapsulation by vesicles.
Langmuir, 2008, 24(6): 2326–2330
10.1021/la702171s[47] Vivares D, Soussan E, Blanzat M,
. Sugar-derived tricatenar catanionic surfactant: Self-assembly and aggregation behavior in the cationic-rich side of the system.
Langmuir , 2008, 24(17): 9260–9267
10.1021/la8005635[48] Frankel D A, O’Brien D F. Supramolecular assemblies of diacetylenic aldonamides.
Journal of the American Chemical Society, 1991, 113(19): 7436–7437
10.1021/ja00019a059[49] Frankel D A, O’Brien D F. Supramolecular assemblies of diacetylenic aldonamides.
Journal of the American Chemical Society, 1994, 116(22): 10057–10069
10.1021/ja00101a026[50] Hafkamp R J H, Feiters M C, Nolte R J M. Organogels from carbohydrate amphiphiles.
The Journal of Organic Chemistry, 1999, 64(2): 412–426
10.1021/jo981158t[51] Kim B S, Hong D J, Bae J,
. Controlled self-assembly of carbohydrate conjugate rod-coil amphiphiles for supramolecular multivalent ligands.
Journal of the American Chemical Society, 2005, 127(46): 16333–16337
10.1021/ja055999a[52] Ryu J H, Lee E, Lim Y B,
. Carbohydrate-coated supramolecular structures: Transformation of nanofibers into spherical micelles triggered by guest encapsulation.
Journal of the American Chemical Society, 2007, 129(15): 4808–4814
10.1021/ja070173p[53] Chen C-K, Lin S-C, Ho R-M,
. Kinetically controlled self-assembled superstructures from semicrystalline chiral block copolymers.
Macromolecules , 2010, 43(18): 7752–7758
10.1021/ma1009879[54] Lin T F, Ho R M, Sung C H,
. Helical morphologies of thermotropic liquid-crystalline chiral Schiff-based rod-coil amphiphiles.
Chemistry of Materials, 2006, 18(23): 5510–5519
10.1021/cm061666g[55] Sung C H, Kung L R, Hsu C S,
. Induced twisting in the self-assembly of chiral Schiff-based rod-coil amphiphiles.
Chemistry of Materials , 2006,18(2): 352–359
10.1021/cm051801+[56] Lin T F, Ho R M, Sung C H,
. Variation of helical twisting power in self-assembled sugar-appended Schiff base chiral rod-coil amphiphiles.
Chemistry of Materials , 2008, 20(4): 1404–1409
10.1021/cm702252b[57] Avalos M, Babiano R, Cintas P,
. A family of hydrogels based on ureido-linked aminopolyol-derived amphiphiles and bolaamphiphiles: Synthesis, gelation under thermal and sonochemical stimuli, and mesomorphic characterization.
Chemistry- A European Journal, 2008, 14(18): 5656–5669
10.1002/chem.200701897[58] Jang D, Lee H-Y, Park M,
. Nano- and microstructure fabrication by using a three-component system.
Chemistry- A European Journal, 2010, 16(16): 4836–4842
[59] Amanokura N, Yoza K, Shinmori H,
. New sugar-based gelators bearing a
p-nitrophenyl chromophore: remarkably large influence of a sugar structure on the gelation ability.
Journal of the Chemical Society, Perkin Transactions 2 , 1998, (12): 2585–2591
10.1039/a807001f[60] Yoza K, Amanokura N, Ono Y,
. Sugar-integrated gelators of organic solvents- Their remarkable diversity in gelation ability and aggregate structure.
Chemistry- A European Journal, 1999, 5(9): 2722–2729
10.1002/(SICI)1521-3765(19990903)5:9<2722::AID-CHEM2722>3.0.CO;2-N[61] Gronwald O, Shinkai S. ‘Bifunctional’ sugar-integrated gelators for organic solvents and water — on the role of nitro-substituents in 1-
O-methyl-4,6-
O-(nitrobenzylidene)-monosaccharides for the improvement of gelation ability.
Journal of the Chemical Society, Perkin Transactions 2 , 2001, (10): 1933–1937
[62] Gronwald O, Shinkai S. Sugar-integrated gelators of organic solvents.
Chemistry- A European Journal, 2001, 7(20): 4328–4334
10.1002/1521-3765(20011015)7:20<4328::AID-CHEM4328>3.0.CO;2-S[63] Sakurai K, Jeong Y, Koumoto K,
. Supramolecular structure of a sugar-appended organogelator explored with synchrotron X-ray small-angle scattering.
Langmuir , 2003, 19(20): 8211–8217
10.1021/la0346752[64] Kiyonaka S, Shinkai S, Hamachi H. Combinatorial library of low molecular-weight organo- and hydrogelators based on glycosylated amino acid derivatives by solid-phase synthesis.
Chemistry- A European Journal, 2003, 9(4): 976–983
10.1002/chem.200390120[65] Hamley I W. Peptide fibrillization.
Angewandte Chemie International Edition , 2007, 46(43): 8128–8147
10.1002/anie.200700861[66] Zhang S G. Fabrication of novel biomaterials through molecular self-assembly.
Nature Biotechnology, 2003, 21(10): 1171–1178
10.1038/nbt874[67] K?nig H M, Kilbinger A F M. Learning from nature: β-sheet-mimicking copolymers get organized.
Angewandte Chemie International Edition, 2007, 46(44): 8334–8340
[68] Sarikaya M, Tamerler C, Jen A K Y,
. Molecular biomimetics: nanotechnology through biology.
Nature Materials, 2003, 2(9): 577–585
10.1038/nmat964[69] Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond.
Biomaterials, 2003, 24(24): 4385–4415
10.1016/S0142-9612(03)00343-0[70] Zhang S G, Holmes T, Lockshin C,
. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane.
Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(8): 3334–3338
10.1073/pnas.90.8.3334[71] Holmes T C, de Lacalle S, Su X,
. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds.
Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6728–6733
10.1073/pnas.97.12.6728[72] Vauthey S, Santoso S, Gong H Y,
. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles.
Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8): 5355–5360
10.1073/pnas.072089599[73] Santoso S, Hwang W, Hartman H,
. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles.
Nano Letters, 2002, 2(7): 687–691
10.1021/nl025563i[74] Aggeli A, Bell M, Boden N,
. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes.
Nature, 1997, 386(6622): 259–262
10.1038/386259a0[75] Aggeli A, Bell M, Boden N,
. Engineering of peptide β-sheet nanotapes.
Journal of Materials Chemistry, 1997, 7(7): 1135–1145
10.1039/a701088e[76] Aggeli A, Nyrkova I A, Bell M,
. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers.
Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(21): 11857–11862
10.1073/pnas.191250198[77] Clark T D, Buriak J M, Kobayashi K,
. Cylindrical β-sheet peptide assemblies.
Journal of the American Chemical Society, 1998, 120(35): 8949–8962
10.1021/ja981485i[78] Hartgerink J D, Clark T D, Ghadiri M R. Peptide nanotubes and beyond.
Chemistry- A European Journal, 1998, 4(8): 1367–1372
10.1002/(SICI)1521-3765(19980807)4:8<1367::AID-CHEM1367>3.0.CO;2-B[79] Deming T J. Polypeptide materials: New synthetic methods and applications.
Advanced Materials, 1997, 9(4): 299–311
10.1002/adma.19970090404[80] Deming T J. Facile synthesis of block copolypeptides of defined architecture.
Nature, 1997, 390(6658): 386–389
10.1038/37084[81] Gauba V, Hartgerink J D. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions.
Journal of the American Chemical Society, 2007, 129(9): 2683–2690
10.1021/ja0683640[82] Dong H, Paramonov S E, Aulisa L,
. Self-assembly of multidomain peptides: Balancing molecular frustration controls conformation and nanostructure.
Journal of the American Chemical Society, 2007, 129(41): 12468–12472
10.1021/ja072536r[83] Gauba V, Hartgerink J D. Surprisingly high stability of collagen ABC heterotrimer: Evaluation of side chain charge pairs.
Journal of the American Chemical Society, 2007, 129(48): 15034–15041
10.1021/ja075854z[84] Dong H, Paramonov S E, Hartgerink J D. Self-assembly of α-helical coiled coil nanofibers.
Journal of the American Chemical Society, 2008, 130(41): 13691–13695
10.1021/ja8037323[85] Russell L E, Fallas J A, Hartgerink J D. Selective assembly of a high stability AAB collagen heterotrimer.
Journal of the American Chemical Society, 2010, 132(10): 3242–3243
10.1021/ja909720g[86] Pomerantz W C, Yuwono V M, Pizzey C L,
. Nanofibers and lyotropic liquid crystals from a class of self-assembling β-peptides.
Angewandte Chemie International Edition, 2008, 47(7): 1241–1244
10.1002/anie.200704372[87] Schneider J P, Pochan D J, Ozbas B,
. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide.
Journal of the American Chemical Society, 2002, 124(50): 15030–15037
10.1021/ja027993g[88] Salick D A, Kretsinger J K, Pochan D J,
. Inherent antibacterial activity of a peptide-based β-hairpin hydrogel.
Journal of the American Chemical Society , 2007, 129(47): 14793–14799
10.1021/ja076300z[89] Nagarkar R P, Hule R A, Pochan D J,
. De novo design of strand-swapped β-hairpin hydrogels.
Journal of the American Chemical Society , 2008, 130(13): 4466–4474
10.1021/ja710295t[90] Pochan D J, Schneider J P, Kretsinger J,
. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide.
Journal of the American Chemical Society , 2003, 125(39): 11802–11803
10.1021/ja0353154[91] Zhao X B, Pan F, Lu J R. Recent development of peptide self-assembly.
Progress in Natural Science , 2008, 18(6): 653–660
10.1016/j.pnsc.2008.01.012[92] Wang M, Hou W, Mi C C,
. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles.
Analytical Chemistry , 2009, 81(21): 8783–8789
10.1021/ac901808q[93] Lim Y B, Lee E, Lee M. Controlled bioactive nanostructures from self-assembly of peptide building blocks.
Angewandte Chemie International Edition , 2007, 46(47): 9011–9014
10.1002/anie.200702732[94] Yoon Y R, Lim Y B, Lee E,
. Self-assembly of a peptide rod-coil: a polyproline rod and a cell-penetrating peptide Tat coil.
Chemical Communications , 2008, (16): 1892–1894
10.1039/b719868j[95] Yu Y C, Berndt P, Tirrell M,
. Self-assembling amphiphiles for construction of protein molecular architecture.
Journal of the American Chemical Society , 1996, 118(50): 12515–12520
10.1021/ja9627656[96] Deng M L, Yu D F, Hou Y B,
. Self-assembly of peptide-amphiphile C
12-Aβ(11-17) into nanofibrils.
The Journal of Physical Chemistry B , 2009, 113(25): 8539–8544
10.1021/jp904289y[97] Zhao X B, Pan F, Xu H,
. Molecular self-assembly and applications of designer peptide amphiphiles.
Chemical Society Reviews , 2010, 39(9): 3480–3498
10.1039/b915923c[98] Berndt P, Fields G B, Tirrell M. Synthetic lipidation of peptides and amino-acids — Monolayer structure and properties.
Journal of the American Chemical Society , 1995, 117(37): 9515–9522
10.1021/ja00142a019[99] Lee K C, Carlson P A, Goldstein A S,
. Protection of a decapeptide from proteolytic cleavage by lipidation and self-assembly into high-axial-ratio microstructures: A kinetic and structural study.
Langmuir , 1999, 15(17): 5500–5508
[100] Ho-Wook J, Paramonov S E, Hartgerink J D. Biomimetic self-assembled nanofibers.
Soft Matter , 2006, 2(3): 177–81
[101] Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralization of peptide-amphiphile nanofibers.
Science , 2001, 294(5547): 1684–1688
10.1126/science.1063187[102] Hartgerink J D, Beniash E, Stupp S I. Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials.
Proceedings of the National Academy of Sciences of the United States of America , 2002, 99(8): 5133–5138
10.1073/pnas.072699999[103] Claussen R C, Rabatic B M, Stupp S I. Aqueous self-assembly of unsymmetric peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces.
Journal of the American Chemical Society , 2003, 125(42): 12680–12681
10.1021/ja035882r[104] Niece K L, Hartgerink J D, Donners J,
. Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction.
Journal of the American Chemical Society , 2003, 125(24): 7146–7147
10.1021/ja028215r[105] Behanna H A, Donners J, Gordon A C,
. Coassembly of amphiphiles with opposite peptide polarities into nanofibers.
Journal of the American Chemical Society , 2005, 127(4): 1193–1200
10.1021/ja044863u[106] Tovar J D, Claussen R C, Stupp S I.Probing the interior of peptide amphiphile supramolecular aggregates.
Journal of the American Chemical Society, 2005, 127(20): 7337–7345
10.1021/ja043764d[107] Cui H, Muraoka T, Cheetham A G,
. Self-assembly of giant peptide nanobelts.
Nano Letters, 2009, 9(3): 945–951
10.1021/nl802813f[108] Pashuck E T, Stupp S I.Direct observation of morphological tranformation from twisted ribbons into helical ribbons.
Journal of the American Chemical Society, 2010, 132(26): 8819–8821
10.1021/ja100613w[109] L?wik D W P M, Linhardt J G, Adams P J H M,
. Non-covalent stabilization of a β-hairpin peptide into liposomes.
Organic & Biomolecular Chemistry, 2003, 1(11): 1827–1829
10.1039/b303749e[110] L?wik D W P M, van Hest J C M. Peptide based amphiphiles.
Chemical Society Reviews, 2004, 33(4): 234–245
10.1039/b212638a[111] Meijer J T, Henckens M, Minten I J,
. Disassembling peptide-based fibres by switching the hydrophobic-hydrophilic balance.
Soft Matter , 2007, 3(9): 1135–1137
10.1039/b708847g[112] Paramonov S E, Jun H W, Hartgerink J D. Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing.
Journal of the American Chemical Society, 2006, 128(22): 7291–7298
10.1021/ja060573x[113] Kwon S, Jeon A, Yoo S H,
. Unprecedented molecular architectures by the controlled self-assembly of a β-peptide foldamer.
Angewandte Chemie International Edition, 2010, 122(44): 8408–8412
10.1002/ange.201003302[114] Seeman N C. Nucleic acid junctions and lattices.
Journal of Theoretical Biology, 1982, 99(2): 237–247
10.1016/0022-5193(82)90002-9[115] Winfree E, Liu F R, Wenzler L A,
. Design and self-assembly of two-dimensional DNA crystals.
Nature , 1998, 394(6693): 539–544
10.1038/28998[116] Yan H, Park S H, Finkelstein G,
. DNA-templated self-assembly of protein arrays and highly conductive nanowires.
Science, 2003, 301(5641): 1882–1884
10.1126/science.1089389[117] Lin C, Liu Y, Yan H. Designer DNA nanoarchitectures.
Biochemistry, 2009, 48(8): 1663–1674
10.1021/bi802324w[118] Seeman N C, Wang H, Qi J,
. DNA nanotechnology and topology.
Biological Structure and Dynamics, 1996, 2: 319–339
[119] Seeman N C. The design and engineering of nucleic acid nanoscale assemblies.
Current Opinion in Structural Biology, 1996, 6(4): 519–526
10.1016/S0959-440X(96)80118-7[120] Seeman N C. DNA nanotechnology: Novel DNA constructions.
Annual Review of Biophysics and Biomolecular Structure, 1998, 27: 225–248
[121] Seeman N C. DNA engineering and its application to nanotechnology.
Trends in Biotechnology, 1999, 17(11): 437–443
10.1016/S0167-7799(99)01360-8[122] Seeman N C, Liu F, Wenzler L A,
. Design and modification of two dimensional DNA arrays.
Biophysical Journal, 1999, 76(1): A152–A152
[123] Yin P, Hariadi R F, Sahu S,
. Programming DNA tube circumferences.
Science, 2008, 321(5890): 824–826
10.1126/science.1157312[124] LaBean T H.Nanotechnology: Another dimension for DNA art.
Nature, 2009, 459(7245): 331–332
10.1038/459331a[125] Hansen M N, Zhang A M, Rangnekar A,
. Weave tile architecture construction strategy for DNA nanotechnology.
Journal of the American Chemical Society, 2010, 132(41): 14481–14486
10.1021/ja104456p[126] Yan H.Nucleic acid nanotechnology.
Science, 2004, 306(5704): 2048–2049
10.1126/science.1106754[127] Park S H, Yin P, Liu Y,
. Programmable DNA self-assemblies for nanoscale organization of ligands and proteins.
Nano Letters, 2005, 5(4): 729–733
10.1021/nl050175c[128] Liu Y, Ke Y G, Yan H. Self-assembly of symmetric finite-size DNA nanoarrays.
Journal of the American Chemical Society, 2005, 127(49): 17140–17141
10.1021/ja055614o[129] Liu Y, Yan H. Designer curvature.
Science , 2009, 325(5941): 685–686
10.1126/science.1178328[130] Wang X R, Holowka E, Deming T J,
. Peptide-based inorganic nanocomposite via self-assembly of synthetic polypeptide.
Abstracts of Papers of the American Chemical Society, 2008, 236: 435
[131] Liu D, Wang M S, Deng Z X,
. Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions.
Journal of the American Chemical Society, 2004, 126(8): 2324–2325
10.1021/ja031754r[132] He Y, Ye T, Su M,
. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra.
Nature , 2008, 452(7184): 198–201
10.1038/nature06597[133] Zhang C, Su M, He Y,
. Conformational flexibility facilitates self-assembly of complex DNA nanostructures.
Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(31): 10665–10669
10.1073/pnas.0803841105[134] Zheng J P, Birktoft J J, Chen Y,
. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal.
Nature , 2009, 461(7260): 74–77
10.1038/nature08274[135] Wang F, Mao C B. Nanotubes connected to a micro-tank: hybrid micro-/nano-silica architectures transcribed from living bacteria as bioreactors.
Chemical Communications, 2009, (10): 1222–1224
10.1039/b818652a[136] Aldaye F A, Lo P K, Karam P,
. Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character.
Nature Nanotechnology, 2009, 4(6): 349–352
10.1038/nnano.2009.72[137] Nuraje N, Mohammed S, Yang L L,
. Biomineralization nanolithography: combination of bottom-up and top-down fabrication to grow arrays of monodisperse gold nanoparticles along peptide lines.
Angewandte Chemie International Edition, 2009, 48(14): 2546–2548
10.1002/anie.200805145[138] Holowka E P, Deming T J. Synthesis and cross linking of L-DOPA containing polypeptide vesicles.
Macromolecular Bioscience, 10(5): 496–502
[139] Lo P K, Altvater F, Sleiman H F. Templated synthesis of DNA nanotubes with controlled, predetermined lengths.
Journal of the American Chemical Society, 2010, 132(30): 10212–10214
10.1021/ja1017442[140] Mao C B, Liu A H, Cao B R. Virus-based chemical and biological sensing.
Angewandte Chemie International Edition, 2009, 48(37): 6790–6810
10.1002/anie.200900231[141] Mao C B, Flynn C E, Hayhurst A,
. Viral assembly of oriented quantum dot nanowires.
Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(12): 6946–6951
10.1073/pnas.0832310100[142] Mao C B, Solis D J, Reiss B D,
. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires.
Science , 2004, 303(5655): 213–217
10.1126/science.1092740[143] Balci S, Noda K, Bittner A M,
. Self-assembly of metal-virus nanodumbbells.
Angewandte Chemie International Edition, 2007, 46(17): 3149–3151
10.1002/anie.200604558[144] Vega R A, Maspoch D, Salaita K,
. Nanoarrays of single virus particles.
Angewandte Chemie International Edition, 2005, 44(37): 6013–6015
10.1002/anie.200501978[145] Carrera M R A, Kaufmann G F, Mee J M,
. Treating cocaine addiction with viruses.
Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(28): 10416–10421
10.1073/pnas.0403795101[146] Kovacs E W, Hooker J M, Romanini D W,
. Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system.
Bioconjugate Chemistry, 2007, 18(4): 1140–1147
10.1021/bc070006e[147] Souza G R, Christianson D R, Staquicini F I,
. Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents.
Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(5): 1215–1220
10.1073/pnas.0509739103[148] Goicochea N L, De M, Rotello V M,
. Core-like particles of an enveloped animal virus can self-assemble efficiently on artificial templates.
Nano Letters , 2007, 7(8): 2281–2290
10.1021/nl070860e[149] Petrenko V A. Evolution of phage display: from bioactive peptides to bioselective nanomaterials.
Expert Opinion on Drug Delivery, 2008, 5(8): 825–836
10.1517/17425247.5.8.825[150] Kostiainen M A, Kasyutich O, Cornelissen J,
. Self-assembly and optically triggered disassembly of hierarchical dendron-virus complexes.
Nature Chemistry, 2010, 2(5): 394–399
10.1038/nchem.592[151] Smith G P, Petrenko V A. Phage display.
Chemical Reviews, 1997, 97(2): 391–410
10.1021/cr960065d[152] Liu A H, Abbineni G, Mao C B. Nanocomposite films assembled from genetically engineered filamentous viruses and gold nanoparticles: nanoarchitecture- and humidity-tunable surface plasmon resonance spectra.
Advanced Materials , 2009, 21(9): 1001–1005
10.1002/adma.200800777[153] Ngweniform P, Abbineni G, Cao B R,
. Self-assembly of drug-loaded liposomes on genetically engineered target-recognizing M13 phage: a novel nanocarrier for targeted drug delivery.
Small , 2009, 5(17): 1963–1969
10.1002/smll.200801902[154] Chen C L, Rosi N L. Peptide-based methods for the preparation of nanostructured inorganic materials.
Angewandte Chemie International Edition, 2010, 49(11): 1924–1942
[155] Djalali R, Chen Y, Matsui H. Au nanowire fabrication from sequenced histidine-rich peptide.
Journal of the American Chemical Society, 2002, 124(46): 13660–13661
10.1021/ja028261r[156] Banerjee I A, Yu L T, Matsui H. Cu nanocrystal growth on peptide nanotubes by biomineralization: Size control of Cu nanocrystals by tuning peptide conformation.
Proceedings of the National Academy of Sciences of the United States of America , 2003, 100(25): 14678–14682
10.1073/pnas.2433456100[157] Umetsu M, Mizuta M, Tsumoto K,
. Bioassisted room-temperature immobilization and mineralization of zinc oxide — The structural ordering of ZnO nanoparticles into a flower-type morphology.
Advanced Materials , 2005, 17(21): 2571–2575
10.1002/adma.200500863[158] Jung J H, Ono Y, Hanabusa K,
. Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivatives.
Journal of the American Chemical Society, 2000, 122(20): 5008–5009
10.1021/ja000449s[159] Sone E D, Zubarev E R, Stupp S I. Semiconductor nanohelices templated by supramolecular ribbons.
Angewandte Chemie International Edition, 2002, 41(10): 1705–1709
10.1002/1521-3773(20020517)41:10<1705::AID-ANIE1705>3.0.CO;2-M[160] Sone E D, Zubarev E R, Stupp S I.Supramolecular templating of single and double nanohelices of cadmium sulfide.
Small , 2005, 1(7): 694–697
10.1002/smll.200500026[161] Lin Y Y, Qiao Y, Gao C,
. Tunable one-dimensional helical nanostructures: from supramolecular self-assemblies to silica nanomaterials.
Chemistry of Materials, 2010, 22(24): 6711–6717
10.1021/cm102181e[162] Chen C L, Zhang P J, Rosi N L. A new peptide-based method for the design and synthesis of nanoparticle superstructures: Construction of highly ordered gold nanoparticle double helices.
Journal of the American Chemical Society, 2008, 130(41): 13555–13557
10.1021/ja805683r[163] Chen C L, Rosi N L. Preparation of unique 1-D nanoparticle superstructures and tailoring their structural features.
Journal of the American Chemical Society, 2010, 132(20): 6902–6903
10.1021/ja102000g[164] Lamm M S, Sharma N, Rajagopal K,
. Laterally spaced linear nanoparticle arrays templated by laminated β-sheet fibrils.
Advanced Materials , 2008, 20(3): 447–451
10.1002/adma.200701413[165] Chhabra R, Moralez J G, Raez J,
. One-pot nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles on self-assembled rosette nanotubes.
Journal of the American Chemical Society, 2010, 132(1): 32–33
10.1021/ja908775g[166] Dreyfus R, Leunissen M E, Sha R,
. Aggregation-disaggregation transition of DNA-coated colloids: Experiments and theory.
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2010, 81(4): 041404 (10 pages)
[167] Allen T M, Cullis P R. Drug delivery systems: Entering the mainstream.
Science, 2004, 303(5665): 1818–1822
10.1126/science.1095833[168] Drummond C J, Fong C.Surfactant self-assembly objects as novel drug delivery vehicles.
Current Opinion in Colloid & Interface Science, 1999, 4(6): 449–456
10.1016/S1359-0294(00)00020-0[169] Hughes G A. Nanostructure-mediated drug delivery.
Nanomedicine, 2005, 1(1): 22–30
10.1016/j.nano.2004.11.009[170] Bromberg L. Polymeric micelles in oral chemotherapy.
Journal of Controlled Release, 2008, 128(2): 99–112
10.1016/j.jconrel.2008.01.018[171] Soussan E, Cassel S, Blanzat M,
. Drug delivery by soft matter: matrix and vesicular carriers.
Angewandte Chemie International Edition , 2009, 48(2): 274–288
10.1002/anie.200802453[172] De Cock L J, De Koker S, De Geest B G,
. Polymeric multilayer capsules in drug delivery.
Angewandte Chemie International Edition, 2010, 49(39): 6954–6973
10.1002/anie.200906266[173] Roesler A, Vandermeulen G W M, Klok H-A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers.
Advanced Drug Delivery Reviews, 2001, 53(1): 95–108
10.1016/S0169-409X(01)00222-8[174] Vemula P K, Li J, John G. Enzyme catalysis: Tool to make and break amygdalin hydrogelators from renewable resources: A delivery model for hydrophobic drugs.
Journal of the American Chemical Society, 2006, 128(27): 8932–8938
10.1021/ja062650u[175] Bae Y, Fukushima S, Harada A,
. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change.
Angewandte Chemie International Edition, 2003, 42(38): 4640–4643
10.1002/anie.200250653[176] Ngweniform P, Li D, Mao C B. Self-assembly of drug-loaded liposomes on genetically engineered protein nanotubes: a potential anti-cancer drug delivery vector.
Soft Matter, 2009, 5(5): 954–956
10.1039/b817863a[177] Zhang L, Rakotondradany F, Myles A J,
. Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering.
Biomaterials, 2009, 30(7): 1309–1320
10.1016/j.biomaterials.2008.11.020