Bio-inspired supramolecular self-assembly towards soft nanomaterials

Yiyang LIN, Chuanbin MAO()

PDF(1485 KB)
PDF(1485 KB)
Front. Mater. Sci. ›› 2011, Vol. 5 ›› Issue (3) : 247-265. DOI: 10.1007/s11706-011-0141-5
REVIEW ARTICLE
REVIEW ARTICLE

Bio-inspired supramolecular self-assembly towards soft nanomaterials

  • Yiyang LIN, Chuanbin MAO()
Author information +
History +

Abstract

Supramolecular self-assembly has proven to be a reliable approach towards versatile nanomaterials based on multiple weak intermolecular forces. In this review, the development of bio-inspired supramolecular self-assembly into soft materials and their applications are summarized. Molecular systems used in bio-inspired “bottom-up self-assembly” involve small organic molecules, peptides or proteins, nucleic acids, and viruses. Self-assembled soft nanomaterials have been exploited in various applications such as inorganic nanomaterial synthesis, drug or gene delivery, tissue engineering, and so on.

Keywords

supramolecular self-assembly / soft material / peptide / nucleic acid / virus

Cite this article

Download citation ▾
Yiyang LIN, Chuanbin MAO. Bio-inspired supramolecular self-assembly towards soft nanomaterials. Front Mater Sci, 2011, 5(3): 247‒265 https://doi.org/10.1007/s11706-011-0141-5

References

[1] Lehn J M.Supramolecular chemistry scope and perspectives — Molecules supermolecules molecular devices.Chemica Scripta, 1988, 28(3): 237–262
[2] Lehn J M.Supramolecular chemistry: from molecular information towards self-organization and complex matter.Reports on Progress in Physics, 2004, 67(3): 249–265 10.1088/0034-4885/67/3/R02
[3] Lehn J M.Toward self-organization and complex matter.Science, 2002, 295(5564): 2400–2403 10.1126/science.1071063
[4] Granja J R, Ghadiri M R. Self-assembling peptide nanotubes. NMR in Supramolecular Chemistry, 1999, 526: 61–66
[5] Lawrence D S, Jiang T, Levett M.Self-assembling supramolecular complexes.Chemical Reviews, 1995, 95(6): 2229–2260 10.1021/cr00038a018
[6] Lehn J M. Perspectives in supramolecular chemistry — From molecular recognition towards molecular information-processing and self-organization.Angewandte Chemie International Edition in English, 1990, 29(11): 1304–1319 10.1002/anie.199013041
[7] Prins L J, Reinhoudt D N, Timmerman P. Noncovalent synthesis using hydrogen bonding.Angewandte Chemie International Edition, 2001, 40(13): 2382–2426 10.1002/1521-3773(20010702)40:13<2382::AID-ANIE2382>3.0.CO;2-G
[8] Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry — A chemical strategy for the synthesis of nanostructures.Science, 1991, 254(5036): 1312–1319 10.1126/science.1962191
[9] Whitesides G M, Simanek E E, Mathias J P, . Noncovalent synthesis — Using physical-organic chemistry to make aggregates.Accounts of Chemical Research, 1995, 28(1): 37–44 10.1021/ar00049a006
[10] Rosemeyer H. Nucleolipids: natural occurrence, synthesis, molecular recognition, and supramolecular assemblies as potential precursors of life and bioorganic materials.Chemistry & Biodiversity, 2005, 2(8): 977–1062 10.1002/cbdv.200590082
[11] Itojima Y, Ogawa Y, Tsuno K, . Spontaneous formation of helical structures from phospholipid-nucleoside conjugates.Biochemistry, 1992, 31(20): 4757–4765 10.1021/bi00135a003
[12] Bombelli F B, Berti D, Milani S, . Collective headgroup conformational transition in twisted micellar superstructures.Soft Matter, 2008, 4(5): 1102–1113 10.1039/b800210j
[13] Park S M, Lee Y S, Kim B H. Novel low-molecular-weight hydrogelators based on 2′-deoxyuridine. Chemical Communications, 2003, (23): 2912–2913 10.1039/b311249g
[14] Campins N, Dieudonné P, Grinstaff M W, . Nanostructured assemblies from nucleotide-based amphiphiles.New Journal of Chemistry, 2007, 31(11): 1928–1934 10.1039/b704884j
[15] Fenniri H, Packiarajan M, Vidale K L, . Helical rosette nanotubes: design, self-assembly, and characterization.Journal of the American Chemical Society, 2001, 123(16): 3854–3855 10.1021/ja005886l
[16] Fenniri H, Deng B-L, Ribbe A E, . Entropically driven self-assembly of multichannel rosette nanotubes.Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(Suppl 2): 6487–6492 10.1073/pnas.032527099
[17] Fenniri H, Deng B L, Ribbe A E.Helical rosette nanotubes with tunable chiroptical properties.Journal of the American Chemical Society, 2002, 124(37): 11064–11072 10.1021/ja026164s
[18] Borzsonyi G, Johnson R S, Myles A J, . Rosette nanotubes with 1.4 nm inner diameter from a tricyclic variant of the Lehn-Mascal G∧C base.Chemical Communications, 2010, 46(35): 6527–6529 10.1039/c0cc01859g
[19] Davis J T, Spada G P.Supramolecular architectures generated by self-assembly of guanosine derivatives.Chemical Society Reviews, 2007, 36(2): 296–313 10.1039/b600282j
[20] Davis J T.G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angewandte Chemie International Edition, 2004, 43(6): 668–698 10.1002/anie.200300589
[21] Fragata M, Menikh A, Robert S. Salt-mediated effects in nonionic lipid bilayers constituted of digalactosyldiacylglycerol studied by ftir spectroscopy and molecular modellization.The Journal of Physical Chemistry, 1993, 97(51): 13920–13926 10.1021/j100153a076
[22] Zhang L, Rodriguez J, Raez J, . Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.Nanotechnology, 2009, 20(17): 175101 (12 pages)
[23] Wagner F, Rottem S, Held H D, . Ether lipids in the cell membrane of Mycoplasma fermentans.European Journal of Biochemistry, 2000, 267(20): 6276–6286 10.1046/j.1432-1327.2000.01709.x
[24] Brandenburg K, Richter W, Koch M H J, . Characterization of the nonlamellar cubic and HII structures of lipid A from Salmonella enterica serovar Minnesota by X-ray diffraction and freeze-fracture electron microscopy.Chemistry and Physics of Lipids, 1998, 91(1): 53–69 10.1016/S0009-3084(97)00093-5
[25] Fuhrhop J H, Schnieder P, Rosenberg J, . The chiral bilayer effect stabilizes micellar fibers.Journal of the American Chemical Society, 1987, 109(11): 3387–3390 10.1021/ja00245a032
[26] Fuhrhop J H, Schnieder P, Boekema E, . Lipid bilayer fibers from diastereomeric and enantiomeric N-octylaldonamides. Journal of the American Chemical Society, 1988, 110(9): 2861–2867 10.1021/ja00217a028
[27] Fuhrhop J H, Svenson S, Boekema E, . Long-lived micellar N-alkylaldonamide fiber gels. Solid-state NMR and electron microscopic studies.Journal of the American Chemical Society, 1990, 112(11): 4301–4312 10.1021/ja00167a029
[28] Fuhrhop J H, Boettcher C.Stereochemistry and curvature effects in supramolecular organization and separation processes of micellar N-alkylaldonamide mixtures.Journal of the American Chemical Society, 1990, 112(5): 1768–1776 10.1021/ja00161a018
[29] Fuhrhop J H, Blumtritt P, Lehmann C, . Supramolecular assemblies, a crystal structure, and a polymer of N-diacetylenic gluconamides.Journal of the American Chemical Society, 1991, 113(19): 7437–7439 10.1021/ja00019a060
[30] Koning J, Boettcher C, Winkler H, . Magic angle (54.7-degrees) gradient and minimal-surfaces in quadruple micellar helices.Journal of the American Chemical Society, 1993, 115(2): 693–700 10.1021/ja00055a045
[31] John G, Masuda M, Okada Y, . Nanotube formation from renewable resources via coiled nanofibers.Advanced Materials , 2001, 13(10): 715–718 10.1002/1521-4095(200105)13:10<715::AID-ADMA715>3.0.CO;2-Z
[32] John G, Jung J H, Minamikawa H, . Morphological control of helical solid bilayers in high-axial-ratio nanostructures through binary self-assembly. Chemistry- A European Journal, 2002, 8(23): 5494–5500 10.1002/1521-3765(20021202)8:23<5494::AID-CHEM5494>3.0.CO;2-P
[33] Jung J H, John G, Masuda M, . Self-assembly of a sugar-based gelator in water: Its remarkable diversity in gelation ability and aggregate structure.Langmuir, 2001, 17(23): 7229–7232 10.1021/la0109516
[34] Jung J H, John G, Yoshida K, . Self-assembling structures of long-chain phenyl glucoside influenced by the introduction of double bonds.Journal of the American Chemical Society, 2002, 124(36): 10674–10675 10.1021/ja020752o
[35] Shimizu T, Masuda M. Stereochemical effect of even-odd connecting links on supramolecular assemblies made of 1-glucosamide bolaamphiphiles.Journal of the American Chemical Society , 1997, 119(12): 2812–2818 10.1021/ja961226y
[36] Nakazawa I, Masuda M, Okada Y, . Spontaneous formation of helically twisted fibers from 2-glucosamide bolaamphiphiles: Energy-filtering transmission electron microscopic observation and even-odd effect of connecting bridge.Langmuir, 1999, 15(14): 4757–4764 10.1021/la981714e
[37] Bell P C, Bergsma M, Dolbnya I P, . Transfection mediated by gemini surfactants: Engineered escape from the endosomal compartment.Journal of the American Chemical Society, 2003, 125(6): 1551–1558 10.1021/ja020707g
[38] Johnsson M, Wagenaar A, Engberts J. Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH.Journal of the American Chemical Society, 2003, 125(3): 757–760 10.1021/ja028195t
[39] Johnsson M, Wagenaar A, Stuart M C A, . Sugar-based gemini surfactants with pH-dependent aggregation behavior: Vesicle-to-micelle transition, critical micelle concentration, and vesicle surface charge reversal.Langmuir, 2003, 19(11): 4609–4618 10.1021/la0343270
[40] Johnsson M, Engberts J. Novel sugar-based gemini surfactants: aggregation properties on aqueous solution.Journal of Physical Organic Chemistry, 2004, 17(11): 934–944 10.1002/poc.817
[41] Wasungu L, Scarzello M, van Dam G, . Transfection mediated by pH-sensitive sugar-based gemini surfactants; potential for in vivo gene therapy applications.Journal of Molecular Medicine, 2006, 84(9): 774–784 10.1007/s00109-006-0067-z
[42] Wasungu L, Stuart M C A, Scarzello M, . Lipoplexes formed from sugar-based gemini surfactants undergo a lamellar-to-micellar phase transition at acidic pH. Evidence for a non-inverted membrane-destabilizing hexagonal phase of lipoplexes.Biochimica et Biophysica Acta (BBA) - Biomembranes, 2006, 1758(10): 1677–1684 10.1016/j.bbamem.2006.06.019
[43] Blanzat M, Massip S, Speziale V, . First example of helices and tubules in aqueous solution of a new fluorescent catanionic sugar surfactant.Langmuir, 2001, 17(11): 3512–3514 10.1021/la001744t
[44] Blanzat M, Perez E, Rico-Lattes I, . Correlation between structure, aggregation behaviour and cellular toxicity of anti-HIV catanionic analogues of galactosylceramide. Chemical Communications, 2003, (2): 244–245 10.1039/b210392n
[45] Soussan E, Pasc-Banu A, Consola S, . New catanionic triblock amphiphiles: Supramolecular organization of a sugar-derived bolaamphiphile associated with dicarboxylates.Chemphyschem , 2005, 6(12): 2492–2494 10.1002/cphc.200500273
[46] Soussan E, Mille C, Blanzat M, . Sugar-derived tricatenar catanionic surfactant: Synthesis, self-assembly properties, and hydrophilic probe encapsulation by vesicles.Langmuir, 2008, 24(6): 2326–2330 10.1021/la702171s
[47] Vivares D, Soussan E, Blanzat M, . Sugar-derived tricatenar catanionic surfactant: Self-assembly and aggregation behavior in the cationic-rich side of the system.Langmuir , 2008, 24(17): 9260–9267 10.1021/la8005635
[48] Frankel D A, O’Brien D F. Supramolecular assemblies of diacetylenic aldonamides.Journal of the American Chemical Society, 1991, 113(19): 7436–7437 10.1021/ja00019a059
[49] Frankel D A, O’Brien D F. Supramolecular assemblies of diacetylenic aldonamides.Journal of the American Chemical Society, 1994, 116(22): 10057–10069 10.1021/ja00101a026
[50] Hafkamp R J H, Feiters M C, Nolte R J M. Organogels from carbohydrate amphiphiles.The Journal of Organic Chemistry, 1999, 64(2): 412–426 10.1021/jo981158t
[51] Kim B S, Hong D J, Bae J, . Controlled self-assembly of carbohydrate conjugate rod-coil amphiphiles for supramolecular multivalent ligands.Journal of the American Chemical Society, 2005, 127(46): 16333–16337 10.1021/ja055999a
[52] Ryu J H, Lee E, Lim Y B, . Carbohydrate-coated supramolecular structures: Transformation of nanofibers into spherical micelles triggered by guest encapsulation.Journal of the American Chemical Society, 2007, 129(15): 4808–4814 10.1021/ja070173p
[53] Chen C-K, Lin S-C, Ho R-M, . Kinetically controlled self-assembled superstructures from semicrystalline chiral block copolymers.Macromolecules , 2010, 43(18): 7752–7758 10.1021/ma1009879
[54] Lin T F, Ho R M, Sung C H, . Helical morphologies of thermotropic liquid-crystalline chiral Schiff-based rod-coil amphiphiles. Chemistry of Materials, 2006, 18(23): 5510–5519 10.1021/cm061666g
[55] Sung C H, Kung L R, Hsu C S, . Induced twisting in the self-assembly of chiral Schiff-based rod-coil amphiphiles.Chemistry of Materials , 2006,18(2): 352–359 10.1021/cm051801+
[56] Lin T F, Ho R M, Sung C H, . Variation of helical twisting power in self-assembled sugar-appended Schiff base chiral rod-coil amphiphiles.Chemistry of Materials , 2008, 20(4): 1404–1409 10.1021/cm702252b
[57] Avalos M, Babiano R, Cintas P, . A family of hydrogels based on ureido-linked aminopolyol-derived amphiphiles and bolaamphiphiles: Synthesis, gelation under thermal and sonochemical stimuli, and mesomorphic characterization.Chemistry- A European Journal, 2008, 14(18): 5656–5669 10.1002/chem.200701897
[58] Jang D, Lee H-Y, Park M, . Nano- and microstructure fabrication by using a three-component system.Chemistry- A European Journal, 2010, 16(16): 4836–4842
[59] Amanokura N, Yoza K, Shinmori H, . New sugar-based gelators bearing a p-nitrophenyl chromophore: remarkably large influence of a sugar structure on the gelation ability. Journal of the Chemical Society, Perkin Transactions 2 , 1998, (12): 2585–2591 10.1039/a807001f
[60] Yoza K, Amanokura N, Ono Y, . Sugar-integrated gelators of organic solvents- Their remarkable diversity in gelation ability and aggregate structure.Chemistry- A European Journal, 1999, 5(9): 2722–2729 10.1002/(SICI)1521-3765(19990903)5:9<2722::AID-CHEM2722>3.0.CO;2-N
[61] Gronwald O, Shinkai S. ‘Bifunctional’ sugar-integrated gelators for organic solvents and water — on the role of nitro-substituents in 1-O-methyl-4,6-O-(nitrobenzylidene)-monosaccharides for the improvement of gelation ability.Journal of the Chemical Society, Perkin Transactions 2 , 2001, (10): 1933–1937
[62] Gronwald O, Shinkai S. Sugar-integrated gelators of organic solvents.Chemistry- A European Journal, 2001, 7(20): 4328–4334 10.1002/1521-3765(20011015)7:20<4328::AID-CHEM4328>3.0.CO;2-S
[63] Sakurai K, Jeong Y, Koumoto K, . Supramolecular structure of a sugar-appended organogelator explored with synchrotron X-ray small-angle scattering. Langmuir , 2003, 19(20): 8211–8217 10.1021/la0346752
[64] Kiyonaka S, Shinkai S, Hamachi H. Combinatorial library of low molecular-weight organo- and hydrogelators based on glycosylated amino acid derivatives by solid-phase synthesis.Chemistry- A European Journal, 2003, 9(4): 976–983 10.1002/chem.200390120
[65] Hamley I W. Peptide fibrillization.Angewandte Chemie International Edition , 2007, 46(43): 8128–8147 10.1002/anie.200700861
[66] Zhang S G. Fabrication of novel biomaterials through molecular self-assembly.Nature Biotechnology, 2003, 21(10): 1171–1178 10.1038/nbt874
[67] K?nig H M, Kilbinger A F M. Learning from nature: β-sheet-mimicking copolymers get organized.Angewandte Chemie International Edition, 2007, 46(44): 8334–8340
[68] Sarikaya M, Tamerler C, Jen A K Y, . Molecular biomimetics: nanotechnology through biology.Nature Materials, 2003, 2(9): 577–585 10.1038/nmat964
[69] Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond.Biomaterials, 2003, 24(24): 4385–4415 10.1016/S0142-9612(03)00343-0
[70] Zhang S G, Holmes T, Lockshin C, . Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane.Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(8): 3334–3338 10.1073/pnas.90.8.3334
[71] Holmes T C, de Lacalle S, Su X, . Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds.Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6728–6733 10.1073/pnas.97.12.6728
[72] Vauthey S, Santoso S, Gong H Y, . Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles.Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8): 5355–5360 10.1073/pnas.072089599
[73] Santoso S, Hwang W, Hartman H, . Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles.Nano Letters, 2002, 2(7): 687–691 10.1021/nl025563i
[74] Aggeli A, Bell M, Boden N, . Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes.Nature, 1997, 386(6622): 259–262 10.1038/386259a0
[75] Aggeli A, Bell M, Boden N, . Engineering of peptide β-sheet nanotapes.Journal of Materials Chemistry, 1997, 7(7): 1135–1145 10.1039/a701088e
[76] Aggeli A, Nyrkova I A, Bell M, . Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers.Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(21): 11857–11862 10.1073/pnas.191250198
[77] Clark T D, Buriak J M, Kobayashi K, . Cylindrical β-sheet peptide assemblies.Journal of the American Chemical Society, 1998, 120(35): 8949–8962 10.1021/ja981485i
[78] Hartgerink J D, Clark T D, Ghadiri M R. Peptide nanotubes and beyond.Chemistry- A European Journal, 1998, 4(8): 1367–1372 10.1002/(SICI)1521-3765(19980807)4:8<1367::AID-CHEM1367>3.0.CO;2-B
[79] Deming T J. Polypeptide materials: New synthetic methods and applications. Advanced Materials, 1997, 9(4): 299–311 10.1002/adma.19970090404
[80] Deming T J. Facile synthesis of block copolypeptides of defined architecture.Nature, 1997, 390(6658): 386–389 10.1038/37084
[81] Gauba V, Hartgerink J D. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions.Journal of the American Chemical Society, 2007, 129(9): 2683–2690 10.1021/ja0683640
[82] Dong H, Paramonov S E, Aulisa L, . Self-assembly of multidomain peptides: Balancing molecular frustration controls conformation and nanostructure.Journal of the American Chemical Society, 2007, 129(41): 12468–12472 10.1021/ja072536r
[83] Gauba V, Hartgerink J D. Surprisingly high stability of collagen ABC heterotrimer: Evaluation of side chain charge pairs.Journal of the American Chemical Society, 2007, 129(48): 15034–15041 10.1021/ja075854z
[84] Dong H, Paramonov S E, Hartgerink J D. Self-assembly of α-helical coiled coil nanofibers. Journal of the American Chemical Society, 2008, 130(41): 13691–13695 10.1021/ja8037323
[85] Russell L E, Fallas J A, Hartgerink J D. Selective assembly of a high stability AAB collagen heterotrimer.Journal of the American Chemical Society, 2010, 132(10): 3242–3243 10.1021/ja909720g
[86] Pomerantz W C, Yuwono V M, Pizzey C L, . Nanofibers and lyotropic liquid crystals from a class of self-assembling β-peptides.Angewandte Chemie International Edition, 2008, 47(7): 1241–1244 10.1002/anie.200704372
[87] Schneider J P, Pochan D J, Ozbas B, . Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide.Journal of the American Chemical Society, 2002, 124(50): 15030–15037 10.1021/ja027993g
[88] Salick D A, Kretsinger J K, Pochan D J, . Inherent antibacterial activity of a peptide-based β-hairpin hydrogel.Journal of the American Chemical Society , 2007, 129(47): 14793–14799 10.1021/ja076300z
[89] Nagarkar R P, Hule R A, Pochan D J, . De novo design of strand-swapped β-hairpin hydrogels. Journal of the American Chemical Society , 2008, 130(13): 4466–4474 10.1021/ja710295t
[90] Pochan D J, Schneider J P, Kretsinger J, . Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. Journal of the American Chemical Society , 2003, 125(39): 11802–11803 10.1021/ja0353154
[91] Zhao X B, Pan F, Lu J R. Recent development of peptide self-assembly. Progress in Natural Science , 2008, 18(6): 653–660 10.1016/j.pnsc.2008.01.012
[92] Wang M, Hou W, Mi C C, . Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles. Analytical Chemistry , 2009, 81(21): 8783–8789 10.1021/ac901808q
[93] Lim Y B, Lee E, Lee M. Controlled bioactive nanostructures from self-assembly of peptide building blocks. Angewandte Chemie International Edition , 2007, 46(47): 9011–9014 10.1002/anie.200702732
[94] Yoon Y R, Lim Y B, Lee E, . Self-assembly of a peptide rod-coil: a polyproline rod and a cell-penetrating peptide Tat coil. Chemical Communications , 2008, (16): 1892–1894 10.1039/b719868j
[95] Yu Y C, Berndt P, Tirrell M, . Self-assembling amphiphiles for construction of protein molecular architecture. Journal of the American Chemical Society , 1996, 118(50): 12515–12520 10.1021/ja9627656
[96] Deng M L, Yu D F, Hou Y B, . Self-assembly of peptide-amphiphile C12-Aβ(11-17) into nanofibrils. The Journal of Physical Chemistry B , 2009, 113(25): 8539–8544 10.1021/jp904289y
[97] Zhao X B, Pan F, Xu H, . Molecular self-assembly and applications of designer peptide amphiphiles. Chemical Society Reviews , 2010, 39(9): 3480–3498 10.1039/b915923c
[98] Berndt P, Fields G B, Tirrell M. Synthetic lipidation of peptides and amino-acids — Monolayer structure and properties. Journal of the American Chemical Society , 1995, 117(37): 9515–9522 10.1021/ja00142a019
[99] Lee K C, Carlson P A, Goldstein A S, . Protection of a decapeptide from proteolytic cleavage by lipidation and self-assembly into high-axial-ratio microstructures: A kinetic and structural study. Langmuir , 1999, 15(17): 5500–5508
[100] Ho-Wook J, Paramonov S E, Hartgerink J D. Biomimetic self-assembled nanofibers. Soft Matter , 2006, 2(3): 177–81
[101] Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science , 2001, 294(5547): 1684–1688 10.1126/science.1063187
[102] Hartgerink J D, Beniash E, Stupp S I. Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials. Proceedings of the National Academy of Sciences of the United States of America , 2002, 99(8): 5133–5138 10.1073/pnas.072699999
[103] Claussen R C, Rabatic B M, Stupp S I. Aqueous self-assembly of unsymmetric peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces. Journal of the American Chemical Society , 2003, 125(42): 12680–12681 10.1021/ja035882r
[104] Niece K L, Hartgerink J D, Donners J, . Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. Journal of the American Chemical Society , 2003, 125(24): 7146–7147 10.1021/ja028215r
[105] Behanna H A, Donners J, Gordon A C, . Coassembly of amphiphiles with opposite peptide polarities into nanofibers. Journal of the American Chemical Society , 2005, 127(4): 1193–1200 10.1021/ja044863u
[106] Tovar J D, Claussen R C, Stupp S I.Probing the interior of peptide amphiphile supramolecular aggregates.Journal of the American Chemical Society, 2005, 127(20): 7337–7345 10.1021/ja043764d
[107] Cui H, Muraoka T, Cheetham A G, . Self-assembly of giant peptide nanobelts.Nano Letters, 2009, 9(3): 945–951 10.1021/nl802813f
[108] Pashuck E T, Stupp S I.Direct observation of morphological tranformation from twisted ribbons into helical ribbons. Journal of the American Chemical Society, 2010, 132(26): 8819–8821 10.1021/ja100613w
[109] L?wik D W P M, Linhardt J G, Adams P J H M, . Non-covalent stabilization of a β-hairpin peptide into liposomes. Organic & Biomolecular Chemistry, 2003, 1(11): 1827–1829 10.1039/b303749e
[110] L?wik D W P M, van Hest J C M. Peptide based amphiphiles.Chemical Society Reviews, 2004, 33(4): 234–245 10.1039/b212638a
[111] Meijer J T, Henckens M, Minten I J, . Disassembling peptide-based fibres by switching the hydrophobic-hydrophilic balance. Soft Matter , 2007, 3(9): 1135–1137 10.1039/b708847g
[112] Paramonov S E, Jun H W, Hartgerink J D. Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing.Journal of the American Chemical Society, 2006, 128(22): 7291–7298 10.1021/ja060573x
[113] Kwon S, Jeon A, Yoo S H, . Unprecedented molecular architectures by the controlled self-assembly of a β-peptide foldamer. Angewandte Chemie International Edition, 2010, 122(44): 8408–8412 10.1002/ange.201003302
[114] Seeman N C. Nucleic acid junctions and lattices.Journal of Theoretical Biology, 1982, 99(2): 237–247 10.1016/0022-5193(82)90002-9
[115] Winfree E, Liu F R, Wenzler L A, . Design and self-assembly of two-dimensional DNA crystals.Nature , 1998, 394(6693): 539–544 10.1038/28998
[116] Yan H, Park S H, Finkelstein G, . DNA-templated self-assembly of protein arrays and highly conductive nanowires.Science, 2003, 301(5641): 1882–1884 10.1126/science.1089389
[117] Lin C, Liu Y, Yan H. Designer DNA nanoarchitectures.Biochemistry, 2009, 48(8): 1663–1674 10.1021/bi802324w
[118] Seeman N C, Wang H, Qi J, . DNA nanotechnology and topology.Biological Structure and Dynamics, 1996, 2: 319–339
[119] Seeman N C. The design and engineering of nucleic acid nanoscale assemblies.Current Opinion in Structural Biology, 1996, 6(4): 519–526 10.1016/S0959-440X(96)80118-7
[120] Seeman N C. DNA nanotechnology: Novel DNA constructions.Annual Review of Biophysics and Biomolecular Structure, 1998, 27: 225–248
[121] Seeman N C. DNA engineering and its application to nanotechnology. Trends in Biotechnology, 1999, 17(11): 437–443 10.1016/S0167-7799(99)01360-8
[122] Seeman N C, Liu F, Wenzler L A, . Design and modification of two dimensional DNA arrays.Biophysical Journal, 1999, 76(1): A152–A152
[123] Yin P, Hariadi R F, Sahu S, . Programming DNA tube circumferences.Science, 2008, 321(5890): 824–826 10.1126/science.1157312
[124] LaBean T H.Nanotechnology: Another dimension for DNA art.Nature, 2009, 459(7245): 331–332 10.1038/459331a
[125] Hansen M N, Zhang A M, Rangnekar A, . Weave tile architecture construction strategy for DNA nanotechnology.Journal of the American Chemical Society, 2010, 132(41): 14481–14486 10.1021/ja104456p
[126] Yan H.Nucleic acid nanotechnology.Science, 2004, 306(5704): 2048–2049 10.1126/science.1106754
[127] Park S H, Yin P, Liu Y, . Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. Nano Letters, 2005, 5(4): 729–733 10.1021/nl050175c
[128] Liu Y, Ke Y G, Yan H. Self-assembly of symmetric finite-size DNA nanoarrays.Journal of the American Chemical Society, 2005, 127(49): 17140–17141 10.1021/ja055614o
[129] Liu Y, Yan H. Designer curvature. Science , 2009, 325(5941): 685–686 10.1126/science.1178328
[130] Wang X R, Holowka E, Deming T J, . Peptide-based inorganic nanocomposite via self-assembly of synthetic polypeptide.Abstracts of Papers of the American Chemical Society, 2008, 236: 435
[131] Liu D, Wang M S, Deng Z X, . Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions.Journal of the American Chemical Society, 2004, 126(8): 2324–2325 10.1021/ja031754r
[132] He Y, Ye T, Su M, . Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra.Nature , 2008, 452(7184): 198–201 10.1038/nature06597
[133] Zhang C, Su M, He Y, . Conformational flexibility facilitates self-assembly of complex DNA nanostructures.Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(31): 10665–10669 10.1073/pnas.0803841105
[134] Zheng J P, Birktoft J J, Chen Y, . From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature , 2009, 461(7260): 74–77 10.1038/nature08274
[135] Wang F, Mao C B. Nanotubes connected to a micro-tank: hybrid micro-/nano-silica architectures transcribed from living bacteria as bioreactors.Chemical Communications, 2009, (10): 1222–1224 10.1039/b818652a
[136] Aldaye F A, Lo P K, Karam P, . Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character.Nature Nanotechnology, 2009, 4(6): 349–352 10.1038/nnano.2009.72
[137] Nuraje N, Mohammed S, Yang L L, . Biomineralization nanolithography: combination of bottom-up and top-down fabrication to grow arrays of monodisperse gold nanoparticles along peptide lines. Angewandte Chemie International Edition, 2009, 48(14): 2546–2548 10.1002/anie.200805145
[138] Holowka E P, Deming T J. Synthesis and cross linking of L-DOPA containing polypeptide vesicles.Macromolecular Bioscience, 10(5): 496–502
[139] Lo P K, Altvater F, Sleiman H F. Templated synthesis of DNA nanotubes with controlled, predetermined lengths.Journal of the American Chemical Society, 2010, 132(30): 10212–10214 10.1021/ja1017442
[140] Mao C B, Liu A H, Cao B R. Virus-based chemical and biological sensing.Angewandte Chemie International Edition, 2009, 48(37): 6790–6810 10.1002/anie.200900231
[141] Mao C B, Flynn C E, Hayhurst A, . Viral assembly of oriented quantum dot nanowires.Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(12): 6946–6951 10.1073/pnas.0832310100
[142] Mao C B, Solis D J, Reiss B D, . Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires.Science , 2004, 303(5655): 213–217 10.1126/science.1092740
[143] Balci S, Noda K, Bittner A M, . Self-assembly of metal-virus nanodumbbells.Angewandte Chemie International Edition, 2007, 46(17): 3149–3151 10.1002/anie.200604558
[144] Vega R A, Maspoch D, Salaita K, . Nanoarrays of single virus particles.Angewandte Chemie International Edition, 2005, 44(37): 6013–6015 10.1002/anie.200501978
[145] Carrera M R A, Kaufmann G F, Mee J M, . Treating cocaine addiction with viruses.Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(28): 10416–10421 10.1073/pnas.0403795101
[146] Kovacs E W, Hooker J M, Romanini D W, . Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system.Bioconjugate Chemistry, 2007, 18(4): 1140–1147 10.1021/bc070006e
[147] Souza G R, Christianson D R, Staquicini F I, . Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents.Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(5): 1215–1220 10.1073/pnas.0509739103
[148] Goicochea N L, De M, Rotello V M, . Core-like particles of an enveloped animal virus can self-assemble efficiently on artificial templates.Nano Letters , 2007, 7(8): 2281–2290 10.1021/nl070860e
[149] Petrenko V A. Evolution of phage display: from bioactive peptides to bioselective nanomaterials.Expert Opinion on Drug Delivery, 2008, 5(8): 825–836 10.1517/17425247.5.8.825
[150] Kostiainen M A, Kasyutich O, Cornelissen J, . Self-assembly and optically triggered disassembly of hierarchical dendron-virus complexes.Nature Chemistry, 2010, 2(5): 394–399 10.1038/nchem.592
[151] Smith G P, Petrenko V A. Phage display. Chemical Reviews, 1997, 97(2): 391–410 10.1021/cr960065d
[152] Liu A H, Abbineni G, Mao C B. Nanocomposite films assembled from genetically engineered filamentous viruses and gold nanoparticles: nanoarchitecture- and humidity-tunable surface plasmon resonance spectra.Advanced Materials , 2009, 21(9): 1001–1005 10.1002/adma.200800777
[153] Ngweniform P, Abbineni G, Cao B R, . Self-assembly of drug-loaded liposomes on genetically engineered target-recognizing M13 phage: a novel nanocarrier for targeted drug delivery.Small , 2009, 5(17): 1963–1969 10.1002/smll.200801902
[154] Chen C L, Rosi N L. Peptide-based methods for the preparation of nanostructured inorganic materials.Angewandte Chemie International Edition, 2010, 49(11): 1924–1942
[155] Djalali R, Chen Y, Matsui H. Au nanowire fabrication from sequenced histidine-rich peptide.Journal of the American Chemical Society, 2002, 124(46): 13660–13661 10.1021/ja028261r
[156] Banerjee I A, Yu L T, Matsui H. Cu nanocrystal growth on peptide nanotubes by biomineralization: Size control of Cu nanocrystals by tuning peptide conformation.Proceedings of the National Academy of Sciences of the United States of America , 2003, 100(25): 14678–14682 10.1073/pnas.2433456100
[157] Umetsu M, Mizuta M, Tsumoto K, . Bioassisted room-temperature immobilization and mineralization of zinc oxide — The structural ordering of ZnO nanoparticles into a flower-type morphology.Advanced Materials , 2005, 17(21): 2571–2575 10.1002/adma.200500863
[158] Jung J H, Ono Y, Hanabusa K, . Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivatives.Journal of the American Chemical Society, 2000, 122(20): 5008–5009 10.1021/ja000449s
[159] Sone E D, Zubarev E R, Stupp S I. Semiconductor nanohelices templated by supramolecular ribbons. Angewandte Chemie International Edition, 2002, 41(10): 1705–1709 10.1002/1521-3773(20020517)41:10<1705::AID-ANIE1705>3.0.CO;2-M
[160] Sone E D, Zubarev E R, Stupp S I.Supramolecular templating of single and double nanohelices of cadmium sulfide.Small , 2005, 1(7): 694–697 10.1002/smll.200500026
[161] Lin Y Y, Qiao Y, Gao C, . Tunable one-dimensional helical nanostructures: from supramolecular self-assemblies to silica nanomaterials.Chemistry of Materials, 2010, 22(24): 6711–6717 10.1021/cm102181e
[162] Chen C L, Zhang P J, Rosi N L. A new peptide-based method for the design and synthesis of nanoparticle superstructures: Construction of highly ordered gold nanoparticle double helices.Journal of the American Chemical Society, 2008, 130(41): 13555–13557 10.1021/ja805683r
[163] Chen C L, Rosi N L. Preparation of unique 1-D nanoparticle superstructures and tailoring their structural features. Journal of the American Chemical Society, 2010, 132(20): 6902–6903 10.1021/ja102000g
[164] Lamm M S, Sharma N, Rajagopal K, . Laterally spaced linear nanoparticle arrays templated by laminated β-sheet fibrils.Advanced Materials , 2008, 20(3): 447–451 10.1002/adma.200701413
[165] Chhabra R, Moralez J G, Raez J, . One-pot nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles on self-assembled rosette nanotubes.Journal of the American Chemical Society, 2010, 132(1): 32–33 10.1021/ja908775g
[166] Dreyfus R, Leunissen M E, Sha R, . Aggregation-disaggregation transition of DNA-coated colloids: Experiments and theory.Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2010, 81(4): 041404 (10 pages)
[167] Allen T M, Cullis P R. Drug delivery systems: Entering the mainstream.Science, 2004, 303(5665): 1818–1822 10.1126/science.1095833
[168] Drummond C J, Fong C.Surfactant self-assembly objects as novel drug delivery vehicles.Current Opinion in Colloid & Interface Science, 1999, 4(6): 449–456 10.1016/S1359-0294(00)00020-0
[169] Hughes G A. Nanostructure-mediated drug delivery.Nanomedicine, 2005, 1(1): 22–30 10.1016/j.nano.2004.11.009
[170] Bromberg L. Polymeric micelles in oral chemotherapy.Journal of Controlled Release, 2008, 128(2): 99–112 10.1016/j.jconrel.2008.01.018
[171] Soussan E, Cassel S, Blanzat M, . Drug delivery by soft matter: matrix and vesicular carriers.Angewandte Chemie International Edition , 2009, 48(2): 274–288 10.1002/anie.200802453
[172] De Cock L J, De Koker S, De Geest B G, . Polymeric multilayer capsules in drug delivery.Angewandte Chemie International Edition, 2010, 49(39): 6954–6973 10.1002/anie.200906266
[173] Roesler A, Vandermeulen G W M, Klok H-A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers.Advanced Drug Delivery Reviews, 2001, 53(1): 95–108 10.1016/S0169-409X(01)00222-8
[174] Vemula P K, Li J, John G. Enzyme catalysis: Tool to make and break amygdalin hydrogelators from renewable resources: A delivery model for hydrophobic drugs.Journal of the American Chemical Society, 2006, 128(27): 8932–8938 10.1021/ja062650u
[175] Bae Y, Fukushima S, Harada A, . Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change.Angewandte Chemie International Edition, 2003, 42(38): 4640–4643 10.1002/anie.200250653
[176] Ngweniform P, Li D, Mao C B. Self-assembly of drug-loaded liposomes on genetically engineered protein nanotubes: a potential anti-cancer drug delivery vector.Soft Matter, 2009, 5(5): 954–956 10.1039/b817863a
[177] Zhang L, Rakotondradany F, Myles A J, . Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering.Biomaterials, 2009, 30(7): 1309–1320 10.1016/j.biomaterials.2008.11.020
AI Summary AI Mindmap
PDF(1485 KB)

Accesses

Citations

Detail

Sections
Recommended

/