[1] Singer A R E, Jennings P H. Hot-shortness of the aluminium-silicon alloys of commercial purity.
Journal of the Institute of Metals , 1946, 73: 197–212
[2] Singer A R E, Jennings P H. Hot-shortness of some aluminium-iron-silicon alloys of high purity.
Journal of the Institute of Metals , 1947, 73: 273–284
[3] Jennings P H, Singer A R E, Pumphrey W I. Hot-shortness of some high-purity alloys in the systems aluminium-copper-silicon and aluminium-magnesium-silicon.
Journal of the Institute of Metals , 1948, 74: 227–248
[4] Pumphrey W I, Lyons J V. Cracking during the casting and welding of the more common binary aluminium alloys.
Journal of the Institute of Metals , 1948, 74: 439–455
[5] Prokhorov N N. Hot Cracking During Welding.
Moscow:
Mashgiz, 1952 (in Russian)
[6] Bochvar A A, Rykalin N N, Prokhorov N N,
. The question of “hot” (crystallisation) cracks.
Welding Production , 1960, 10: 5–7 (in Russian)
[7] Prokhorov N N. The technological strength of metals while crystallizing during welding.
Welding Production , 1962, 9(4): 1–8 (in Russian)
[8] Jonsson M, Karlsson L, Lindgren L E. Thermal stresses, plate motion and hot cracking in butt-welding.
Mechanical Behaviour of Materials IV .
New York:
Pergamon Press, 1984, 273–279
[9] Dike J J, Brooks J A, Li M. Comparison of failure criteria in weld solidification cracking simulations. In: Cerjak H, ed.
Mathematical Modelling of Weld Phenomena 4 .
London:
IOM Communications Ltd., 1998, 199–222
[10] Feng Z. A computational analysis of thermal and mechanical conditions for weld metal solidification cracking.
Welding in the World , 1994, 33(5): 340–347
[11] Zaharia T. Dynamic stresses in weld metal hot cracking.
Welding Journal , 1994, 73(7): 164s–172s
[12] Dike J J, Brooks J A, Krafcik J S. Finite element modelling and verification of thermal-mechanical behaviour in the weld pool region. In: Smartt H B, Johnson J A, David S A, eds.
Trends in Welding Research. ASM International , 1996, 159–164
[13] Feng Z, Zaharia T, David S A. On the thermomechanical conditions for weld metal solidification cracking. In: Cerjak H, ed.
Mathematical Modelling of Weld Phenomena 3 , 1996, 114–147
[14] Feng Z, Zaharia T, David S A. Thermal stress development in a nickel based superalloy during weldability test.
Welding Journal , 1997, 76(11): 470–483
[15] Makhnenko V I, Velikoivanenko E A, Rozynka G F,
. A computer program for prediction the zones with the risk of formation of hot cracks in welding with deep penetration.
The Paton Welding Journal , 1998, 10(2): 57–65
[16] Weise S. Hei?ri?bildung beim Laserstrahlschwei?en von Baust?hlen.
Bremen:
BIAS-Verlag, 1998 (in German)
[17] Herold H, Streitenberger M, Pchennikov A. Modelling of the PRV-test to examine the origin of different hot cracking types. In: Cerjak H, ed.
Mathematical Modelling of Weld Phenomena 5 .
London:
IOM Communications Ltd., 2001, 783–792
[18] Shibahara M, Serizawa H, Murakawa H. Finite element method for hot cracking analysis under welding using temperature dependent interface element. In: Sahm P R,
., eds.
Modelling of Casting, Welding and Advanced Solidification Processes IX. Aachen: Shaker-Verlag , 2000, 844–851
[19] Shibahara M, Serizawa H, Murakawa H. Finite element method for hot cracking analysis using temperature dependent interface element. In: Cerjak H, ed.
Mathematical Modelling of Weld Phenomena 5 .
London:
IOM Communications Ltd., 2001, 253–267
[20] Bergmann H W, Hilbinger R M. Numerical simulation of centre line hot cracks in laser beam welding of aluminium close to the sheet edge. In: Cerjak H, ed.
Mathematical Modelling of Weld Phenomena 4 .
London:
IOM Communications Ltd., 1998, 658–668
[21] Hilbinger R M, Bergmann H W, K?hler W,
. Considering of dynamic mechanical boundary conditions in the characterisation of a hot cracking test by means of numerical simulation. In: Cerjak H, ed. Mathematical Modelling of Weld Phenomena 5.
London:
IOM Communications Ltd., 2001, 847–862
[22] Hilbinger R M. Hei?rissbildung beim Schwei?en von Aluminium in Blechrandlage, Universitaet Bayreuth, Bayreuth, 2000 (in German)
[23] Pellini W S. Strain theory of hot tearing.
Foundry , 1952, 80: 125–199
[24] Plochikhine V, Prikhodovsky A, Zoch H-W. Zum Mechanismus der Hei?rissbildung beim Schwei?en von Al-Legierungen.
H?rterei-Technische Mitteilungen , 2003, 58(6): 357–362 (in German)
[25] Ploshikhin V, Prikhodovsky A, Ilin A,
. Mechanical-Metallurgical approach for prediction of solidification cracking in welds. In: Cerjak H, ed.
Mathematical Modelling of Weld Phenomena 8 .
London:
IOM Communications Ltd., 87–104
[26] Saunders N, Miodownik A P. CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Pergamon Materials) Series Vol. 1.
Elsevier Science , 1998
[27] Andersson J-O, Helander T, H?glund L,
. Thermo-Calc & DICTRA, computational tools for materials science.
Calphad , 2002, 26(2): 273–312
10.1016/S0364-5916(02)00037-8[28] Saunders N. The application of calculated phase equilibria to multi-component aluminium alloys.
Journal of Japanese Institute of Light Metals , 2001, 51: 141–150
[29] Akesson B, Karlsson L. Prevention of hot cracking of butt welds in steel panels by controlled additional heating of the panels.
Welding Research International , 1976, 6(5): 35–52
[30] Shumilin V G, Karkhin V A, Rakhman M I,
. A technique of arc welding.
USSR Patent, No. 1109280, 1980
[31] Herold H, Streitenberger M, Pchennikov A,
. Modelling of one sided welding to describe hot cracking at the end of longer butt weld seams.
Welding in the World , 1999, 43(2): 56–64