[1] DuPont J N, Robino C V, Marder A R. Solidification and weldability of Nb-bearing superalloys.
Welding Journal , 1998, 77(10): 417s-431s
[2] DuPont J N. Microstructural development and solidification cracking susceptibility of a stabilized stainless steel.
Welding Journal , 1999, 78(7): 253s-263s
[3] Liu Y G, Nakkalil R, Richards N L,
. The effect of initial microstructure on heat-affected zone microfissuring in Incoloy 903.
Materials Science and Engineering A , 1995, 202(1-2): 179-187
10.1016/0921-5093(95)09804-6[4] Pepe J J, Savage W F. Effects of constitutional liquation in 18Ni maraging steel weldments.
Welding Journal , 1967, 46(9): 411s-422s
[5] Genculu S, Thompson R G. Microstructural evolution in the HAZ of Inconel 718 and correlation with the hot ductility test.
Welding Journal , 1983, 62(4): 337s-345s
[6] Baeslack W A III, Nelson D E. Morphology of weld heat-affected zone liquation in cast alloy 718.
Metallography , 1986, 19(3): 371-379
10.1016/0026-0800(86)90024-8[7] Radhakrishnan B, Thompson R G. A model for the formation and solidification of grain boundary liquid in the heat-affected zone (HAZ) of welds.
Metallurgical and Materials Transactions A , 1992, 23(6): 1783-1799
10.1007/BF02804371[8] Luo X, Shinozaki K, Yoshinara S,
. Theoretical analysis of grain boundary liquation at HAZ of Inconel 718 alloy. A study on laser weldability of Ni-base superalloys. (Report 3).
Quarterly Journal of the Japan Welding Society , 2000, 18(1): 102-111 (in Japanese)
[9] Nakkalil R, Richards N L, Chaturvedi M C. The influence of solidification mode on heat affected zone microfissuring in a nickel-iron base superalloy.
Acta Metallurgia et Materialia , 1993, 41(12): 3381-3392
10.1016/0956-7151(93)90218-H[10] Lin W, Baeslack W A III, Lippold J C. Hot-ductility testing of high-strength low-expansion superalloys. In: David S A, Vitek J M, eds.
Recent Trends in Welding Science and Technology: TWR '89: Proceedings of the 2nd International Conference on Trends in Welding Research, Gatlinburg, Tennessee, USA, 14-18 ,
May, 1989.
Ohio:
ASM International, 1990, 609-614
[11] Ernst S C, Baeslack W A III, Lippold J C. Weldability of high-strength, low-expansion superalloys.
Welding Journal , 1989, 68(10): 418s-430s
[12] Nakkalil R, Richards N L, Chaturvedi M C. Microstructural characterization of INCOLOY 903 weldments.
Metallurgical and Materials Transactions A , 1993, 24(5): 1169-1179
10.1007/BF02657248[13] Baeslack W A III, Lata W P, West S L. A study of heat-affected zone and weld metal liquation cracking in alloy 903.
Welding Journal , 1988, 67(4): 77s-87s
[14] DuPont J N, Robino C V, Marder A R. Modeling solute redistribution and microstructural development in fusion welds of Nb-bearing superalloys.
Acta Materialia , 1998, 46(13): 4781-4790
10.1016/S1359-6454(98)00123-2[15] Hemmer H, Klokkehang S, Grong ?. A process model for heat-affected zone microstructure evolution in duplex stainless steel weldments: Part II. Application to electron beam welding.
Metallurgical and Materials Transactions A , 2000, 31(3): 1035-1048
10.1007/s11661-000-0045-y[16] Ojo O A, Richards N L, Chaturvedi M C. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy.
Scripta Materialia , 2004, 50(5): 641-646
10.1016/j.scriptamat.2003.11.025[17] Richards N L, Nakkalil R, Chaturvedi M C. The influence of electron-beam welding parameters on heat-affected-zone microfissuring in INCOLOY 903.
Metallurgical and Materials Transactions A , 1994, 25(8): 1733-1745
10.1007/BF02668538[18] Lee C H, Lundin C D. Relationship between hot ductility behavior and microstructural changes in TP347 stainless steel.
Welding Journal , 1998, 77(1): 29s-37s