[1] Beck J V, Blackwell B, St Clair C R. Inverse Heat Conduction: Ill-Posed Problems.
New York:
Wiley, 1985
[2] Alifanov O M, Artyukhin E A, Rumyantsev S V. Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems.
New York:
Begell House, 1995
[3] Jarny Y, Ozisik M N, Bardon J P. A general optimization method using adjoint equation for solving multidimensional inverse heat conduction.
International Journal of Heat and Mass Transfer , 1991, 34(11): 2911-2919
10.1016/0017-9310(91)90251-9[4] Neto A J S, Ozisik M N. Two-dimensional inverse heat conduction problem of estimating the time-varying strength of a line source.
Journal of Applied Physics , 1992, 71(11): 5357-5362
10.1063/1.350554[5] Le Niliot C. The boundary-element method for the time-varying strength estimation of point heat sources: Application to a two-dimensional diffusion system.
Numerical Heat Transfer Part B: Fundamentals , 1998, 33(3): 301-321
10.1080/10407799808915035[6] Le Niliot C, Gallet P. Infrared thermography applied to the resolution of inverse heat conduction problems: recovery of heat line sources and boundary conditions.
Revue Générale de Thermique , 1998, 37(8): 629-643
10.1016/S0035-3159(98)80041-X[7] Péneau S, Humeau J P, Jarny Y. Front motion and convective heat flux determination in a phase change process.
Inverse Problems in Engineering , 1996, 4(1): 53-91
10.1080/174159796088027633[8] Keanini R G, Desai N N. Inverse finite element reduced mesh method for predicting multi-dimensional phase change boundaries and nonlinear solid face heat transfer.
International Journal of Heat and Mass Transfer , 1996, 39(5): 1039-1049
10.1016/0017-9310(95)00183-2[9] Hsu Y F, Rubinsky B, Mahin K. An inverse finite element method for the analysis of stationary arc welding processes.
Journal of Heat Transfer , 1986, 108(4): 734-741
10.1115/1.3247006[10] Ruan Y, Zabaras N. An inverse finite-element technique to determine the change of phase interface location in two-dimensional melting problems.
Communications in Applied Numerical Methods , 1991, 7(4): 325-338
10.1002/cnm.1630070411[11] Zabaras N. Adjoint methods for inverse free convection problems with application to solidification processes. In: BorggaardJ, BurnsJ, CliffE, et al., eds.
Computational Methods for Optimal Design and Control .
Boston:
Birkhauser Boston, 1998, 391-426
[12] Karkhin V, Plochikhine V V, Bergmann H W. Solution of inverse heat conduction problem for determining heat input, weld shape, and grain structure during laser welding.
Science and Technology of Welding and Joining , 2002, 7(4): 224-231
10.1179/136217102225004202[13] Guo J, Le Masson P, Artioukhine E,
. Estimation of a source term in a two-dimensional heat transfer problem: application to an electron beam welding.
Inverse Problems in Science and Engineering , 2006, 14(1): 21-38
10.1080/17415970500272866[14] Costantini M. Numerical simulation of electron beam welding. Contribution to the development of a predictive model of the energy supply.
Dissertation for the Doctoral Degree .
Paris:
University of Paris VI, 1996 (in French)
[15] Carin M, Rogeon Ph, Carron D,
. Experimental validation of a predictive model for numerical simulation of thermo-metallurgical phenomena during electron beam welding.
Journal de Physique IV (Proceedings) , 2004, 120: 599-606
[16] Rogeon Ph, Couedel D, Carron D,
. Numerical simulation of electron beam welding of metals: sensitivity study of a predictive model. In: CerjakH, BhadeshiaH K D H, eds.
Mathematical Modelling of Weld Phenomena .
Graz:
The Institute of Materials, Minerals and Mining, 2001, 5: 913-943
[17] Rogeon Ph, Carron D, Le Masson P,
Numerical simulation of electron beam welding of metals: Influence of prior austenite grain size on HAZ microstructure in a low-alloyed steel.
Welding Journal- Research Supplement (to appear) [18] Handbook of Sysweld.
Systus International , 1994