One pot synthesis of monodispersed L-glutathione stabilized gold nanoparticles for the detection of Pb2+ ions

Xiang MAO1,2, Zheng-Ping LI1(), Zhi-Yong TANG2()

PDF(474 KB)
PDF(474 KB)
Front. Mater. Sci. ›› 2011, Vol. 5 ›› Issue (3) : 322-328. DOI: 10.1007/s11706-011-0118-4
RESEARCH ARTICLE
RESEARCH ARTICLE

One pot synthesis of monodispersed L-glutathione stabilized gold nanoparticles for the detection of Pb2+ ions

  • Xiang MAO1,2, Zheng-Ping LI1(), Zhi-Yong TANG2()
Author information +
History +

Abstract

Direct mixture of Au3+ with glutathione (GSH), which act as both reduction agents and stabilizers, in aqueous solution gave rise to production of gold nanoparticles (Au NPs) with uniform sizes of around 21 nm. The GSH stabilizer Au NPs in solution show immediate aggregation after addition of 1 mol/L NaCl aqueous solution containing Pb2+ ions. The Pb2+-induced aggregation in Au NP solution is monitored by both colorimetric response and UV-vis spectroscopy. A rather broad linear range (from 0.1 to 30 μmol/L) and low detection limit (0.1 μmol/L) are explored for Au NP sensors used for detection of Pb2+ ions. Furthermore, the response of GSH-stabilized Au NPs toward Pb2+ ions is specific compared with other possible interferants (Hg2+, Mg2+, Zn2+, Ni2+, Cu2+, Co2+, Ca2+, Mn2+, Cd2+, and Ba2+).

Keywords

lead(II) ion / glutathione (GSH) / gold nanoparticle (Au NP) / detection / colorimetric response

Cite this article

Download citation ▾
Xiang MAO, Zheng-Ping LI, Zhi-Yong TANG. One pot synthesis of monodispersed L-glutathione stabilized gold nanoparticles for the detection of Pb2+ ions. Front Mater Sci, 2011, 5(3): 322‒328 https://doi.org/10.1007/s11706-011-0118-4

References

[1] Liu C W, Huang C C, Chang H T. Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury(II). Langmuir , 2008, 24(15): 8346–8350 10.1021/la800589m
[2] Walkup G K, Imperiali B. Design and evaluation of a peptidyl fluorescent chemosensor for divalent zinc. Journal of the American Chemical Society , 1996, 118(12): 3053–3054 10.1021/ja9538501
[3] Turner A P F. Biosensors — sense and sensitivity. Science , 2000, 290(5495): 1315–1317 10.1126/science.290.5495.1315
[4] Chen P, He C. A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions. Journal of the American Chemical Society , 2004, 126(3): 728–729 10.1021/ja0383975
[5] Liu J, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. Journal of the American Chemical Society , 2003, 125(22): 6642–6643 10.1021/ja034775u
[6] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold solutions. Nature Physical Science , 1973, 241: 20–22
[7] Schmid G. The role of big metal clusters in nanoscience. Journal of the Chemical Society, Dalton Transactions , 1998, 7: 1077–1082 10.1039/a708447a
[8] Wenzel T, Bosbach J, Stietz F, . In situ determination of the shape of supported silver clusters during growth. Surface Science , 1999, 432(3): 257–264 10.1016/S0039-6028(99)00546-4
[9] Cai W P, Hofmeister H, Rainer T, . Optical properties of Ag and Au nanoparticles dispersed within the pores of monolithic mesoporous silica. Journal of Nanoparticle Research , 2001, 3(5–6): 441–451 10.1023/A:1012537817570
[10] Jin R C, Cao Y W, Mirkin C A, . Photoinduced conversion of silver nanospheres to nanoprisms. Science , 2001, 294(5548): 1901–1903 10.1126/science.1066541
[11] Innocenzi P, Brusatin G, Martucci A, . Microstructural characterization of gold-doped silica-titania sol-gel films. Thin Solid Films , 1996, 279(1–2): 23–28 10.1016/0040-6090(95)08032-5
[12] Hutter E, Pileni M-P. Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. The Journal of Physical Chemistry B , 2003, 107(27): 6497–6499 10.1021/jp0342834
[13] El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research , 2001, 34(4): 257–264 10.1021/ar960016n
[14] Nolan E M, Lippard S J. Tools and tactics for the optical detection of mercuric ion. Chemical Reviews , 2008, 108(9): 3443–3480 10.1021/cr068000q
[15] Chai F, Wang C, Wang T, . Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Applied Materials & Interface , 2010, 2(5): 1466–1470 10.1021/am100107k
[16] Liu X, Atwater M, Wang J, . Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces , 2007, 58(1): 3–7 10.1016/j.colsurfb.2006.08.005
[17] He S J, Li D, Zhu C F, . Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye. Chemical Communications , 2008, (40): 4885–4887 10.1039/b811528a
[18] Huang K W, Yu C J, Tseng W L. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion. Biosensors & Bioelectronics , 2010, 25(5): 984–989 10.1016/j.bios.2009.09.006
[19] Slocik J M, Zabinski J S Jr, Phillips D M, . Colorimetric response of peptide-functionalized gold nanoparticles to metal ions. Small , 2008, 4(5): 548–551 10.1002/smll.200700920
[20] Darbha G K, Singh A K, Rai U S, . Selective detection of mercury(II) ion using nonlinear optical properties of gold nanoparticles. Journal of the American Chemical Society , 2008, 130(25): 8038–8043 10.1021/ja801412b
[21] Yu C J, Tseng W L. Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate. Langmuir , 2008, 24(21): 12717–12722 10.1021/la802105b
[22] Kim Y, Johnson R C, Hupp J T. Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Letters , 2001, 1(4): 165–167 10.1021/nl0100116
AI Summary AI Mindmap
PDF(474 KB)

Accesses

Citations

Detail

Sections
Recommended

/