[1] Grieshaber D, MacKenzie R, V?r?s J,
. Electrochemical biosensors- sensor principles and architectures.
Sensors , 2008, 8(3): 1400–1458
10.3390/s8031400[2] Obare S O, De C, Guo W,
. Fluorescent chemosensors for toxic organophosphorus pesticides: a review.
Sensors , 2010, 10(7): 7018–7043
10.3390/s100707018[3] Paul P, Shim B S, Kotov N A. Polymer/clay and polymer/carbon nanotube hybrid organic-inorganic multilayered composites made by sequential layering of nanometer scale films.
Coordination Chemistry Reviews , 2009, 253(23–24): 2835–2851
[4] Wang L Z, Tang F Q, Ozawa K,
. Layer-by-layer assembled thin films of inorganic nanomaterials: fabrication and photo-electrochemical properties.
International Journal of Surface Science and Engineering , 2009, 3(1–2): 44–63
10.1504/IJSURFSE.2009.024361[5] del Mercato L L, Rivera-Gil P, Abbasi A Z,
. LbL multilayer capsules: recent progress and future outlook for their use in life sciences.
Nanoscale , 2010, 2(4): 458–467
10.1039/b9nr00341j[6] Ji Y L, An Q F, Qian J W,
. Nanofiltration membranes prepared by layer-by-layer self-assembly of polyelectrolyte.
Progress in Chemistry , 2010, 22(1): 119–124
[7] Ariga K, Hill J P, Ji Q M. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application.
Physical Chemistry Chemical Physics , 2007, 9(19): 2319–2340
10.1039/b700410a[8] Johnston A P R, Cortez C, Angelatos A S,
. Layer-by-layer engineered capsules and their applications.
Current Opinion in Colloid & Interface Science , 2006, 11(4): 203–209
10.1016/j.cocis.2006.05.001[9] Zhao W, Xu J J, Chen H Y. Electrochemical biosensors based on layer-by-layer assemblies.
Electroanalysis , 2006, 18(18): 1737–1748
10.1002/elan.200603630[10] Srivastava S, Kotov N A. Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires.
Accounts of Chemical Research , 2008, 41(12): 1831–1841
10.1021/ar8001377[11] Kotov N A, Dekany I, Fendler J H. Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films.
The Journal of Physical Chemistry , 1995, 99(35): 13065–13069
10.1021/j100035a005[12] Mamedov A A, Kotov N A, Prato M,
. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites.
Nature Materials , 2002, 1(3): 190–194
10.1038/nmat747[13] Keller S W, Kim H N, Mallouk T E. Layer-by-layer assembly of intercalation compounds and heterostructures on surfaces: toward molecular “beaker” epitaxy.
Journal of the American Chemical Society , 1994, 116(19): 8817–8818
10.1021/ja00098a055[14] He J A, Valluzzi R, Yang K,
. Electrostatic multilayer deposition of a gold-dendrimer nanocomposite.
Chemistry of Materials , 1999, 11(11): 3268–3274
10.1021/cm990311c[15] Araki K, Wagner M J, Wrighton M S. Layer-by-layer growth of electrostatically assembled multilayer porphyrin films.
Langmuir , 1996, 12(22): 5393–5398
10.1021/la960024c[16] Lvov Y, Onda M, Ariga K,
. Ultrathin films of charged polysaccharides assembled alternately with linear polyions.
Journal of Biomaterials Science, Polymer Edition , 1998, 9(4): 345–355
[17] Richert L, Lavalle Ph, Vautier D,
. Cell interactions with polyelectrolyte multilayer films.
Biomacromolecules , 2002, 3(6): 1170–1178
10.1021/bm0255490[18] Boulmedais F, Ball V, Schwinte P,
. Buildup of exponentially growing multilayer polypeptide films with internal secondary structure.
Langmuir , 2003, 19(2): 440–445
10.1021/la0264522[19] Lvov Yu, Decher G, Sukhorukov G. Assembly of thin films by means of successive deposition of alternate layers of DNA and poly(allylamine).
Macromolecules , 1993, 26(20): 5396–5399
10.1021/ma00072a016[20] Hong J, Lowack K, Schmitt J,
. Layer-by-layer deposited multilayer assemblies of polyelectrolytes and proteins: from ultrathin films to protein arrays. In: Laggner P, Glatter O, editors.
Trends in Colloid and Interface Science VII: Springer Berlin/Heidelberg , 1993: 98–102
10.1007/BFb0118482[21] Lvov Y, Ariga K, Kunitake T. Layer-by-layer assembly of alternate protein polyion ultrathin films.
Chemistry Letters , 1994, 23(12): 2323–2326
10.1246/cl.1994.2323[22] Yoo P J, Nam K T, Qi J,
. Spontaneous assembly of viruses on multilayered polymer surfaces.
Nature Materials , 2006, 5(3): 234–240
10.1038/nmat1596[23] Zhai L, Cebeci F C, Cohen R E, et al. Stable superhydrophobic coatings from polyelectrolyte multilayers.
Nano Letters , 2004, 4(7): 1349–1353
10.1021/nl049463j[24] Zhai L, Berg M C, Cebeci F C,
. Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle.
Nano Letters , 2006, 6(6): 1213–1217
10.1021/nl060644q[25] Tang Z Y, Wang Y, Podsiadlo P,
. Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering.
Advanced Materials , 2006, 18(24): 3203–3224
10.1002/adma.200600113[26] Wood K C, Chuang H F, Batten R D,
. Controlling interlayer diffusion to achieve sustained, multiagent delivery from layer-by-layer thin films.
Proceedings of the National Academy of Sciences of the United States of America , 2006, 103(27): 10207–10212
10.1073/pnas.0602884103[27] Jewell C M, Zhang J T, Fredin N J,
. Multilayered polyelectrolyte films promote the direct and localized delivery of DNA to cells.
Journal of Controlled Release , 2005, 106(1–2): 214–223
10.1016/j.jconrel.2005.04.014[28] Podsiadlo P, Sui L, Elkasabi Y,
. Layer-by-layer assembled films of cellulose nanowires with antireflective properties.
Langmuir , 2007, 23(15): 7901–7906
10.1021/la700772a[29] Hiller J, Mendelsohn J D, Rubner M F. Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers.
Nature Materials , 2002, 1(1): 59–63
10.1038/nmat719[30] DeLongchamp D M, Hammond P T. High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites.
Advanced Functional Materials , 2004, 14(3): 224–232
10.1002/adfm.200304507[31] Moriguchi I, Fendler J H. Characterization and electrochromic properties of ultrathin films self-assembled from poly(diallyldimethylammonium) chloride and sodium decatungstate.
Che-mistry of Materials , 1998, 10(8): 2205–2211
10.1021/cm980127b[32] Heuberger R, Sukhorukov G, Voros J,
. Biofunctional polyelectrolyte multilayers and microcapsules: Control of non-specific and bio-specific protein adsorption.
Advanced Functional Materials , 2005, 15(3): 357–366
10.1002/adfm.200400063[33] Hodak J, Etchenique R, Calvo E J,
. Layer-by-layer self-assembly of glucose oxidase with a poly(allylamine)ferrocene redox mediator.
Langmuir , 1997, 13(10): 2708–2716
10.1021/la962014h[34] He P, Bayachou M. Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles.
Langmuir , 2005, 21(13): 6086–6092
10.1021/la050581b[35] Yang M, Yang Y, Yang H,
. Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors.
Biomaterials , 2006, 27(2): 246–255
10.1016/j.biomaterials.2005.05.077[36] Zhang H, Lu H, Hu N. Fabrication of electroactive layer-by-layer films of myoglobin with gold nanoparticles of different sizes.
The Journal of Physical Chemistry B , 2006, 110(5): 2171–2179
10.1021/jp055301f[37] Zhai L, Berg M C, Cebeci F C,
. Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle.
Nano Letters , 2006, 6(6): 1213–1217
10.1021/nl060644q[38] Zhang J, Senger B, Vautier D,
. Natural polyelectrolyte films based on layer-by-layer deposition of collagen and hyaluronic acid.
Biomaterials , 2005, 26(16): 3353–3361
10.1016/j.biomaterials.2004.08.019[39] Mamedov A A, Belov A, Giersig M,
. Nanorainbows: graded semiconductor films from quantum dots.
Journal of the American Chemical Society , 2001, 123(31): 7738–7739
10.1021/ja015857q[40] Wang D, Rogach A L, Caruso F. Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly.
Nano Letters , 2002, 2(8): 857–861
10.1021/nl025624c[41] Shim B S, Podsiadlo P, Lilly D G,
. Nanostructured thin films made by dewetting method of layer-by-layer assembly.
Nano Letters , 2007, 7(11): 3266–3273
10.1021/nl071245d[42] Podsiadlo P, Paternel S, Rouillard J M,
. Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties.
Langmuir , 2005, 21(25): 11915–11921
10.1021/la051284+[43] Billingsley K, Balaconis M K, Dubach J M,
. Fluorescent nano-optodes for glucose detection.
Analytical Chemistry , 2010, 82(9): 3707–3713
10.1021/ac100042e[44] Duong H D, Rhee J I. Use of CdSe/ZnS core-shell quantum dots as energy transfer donors in sensing glucose.
Talanta , 2007, 73(5): 899–905
10.1016/j.talanta.2007.05.011[45] Tang B, Cao L H, Xu K H,
. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles.
Chemistry , 2008, 14(12): 3637–3644
10.1002/chem.200701871[46] Gill R, Bahshi L, Freeman R,
. Optical detection of glucose and acetylcholine esterase inhibitors by H
2O
2-sensitive CdSe/ZnS quantum dots.
Angewandte Chemie International Edition , 2008, 47(9): 1676–1679
10.1002/anie.200704794[47] Xiao Y, Barker P E. Semiconductor nanocrystal probes for human metaphase chromosomes.
Nucleic Acids Research , 2004, 32(3): e28
10.1093/nar/gnh024[48] Zhang C Y, Yeh H C, Kuroki M T,
. Single-quantum-dot-based DNA nanosensor.
Nature Materials , 2005, 4(11): 826–831
10.1038/nmat1508[49] Crut A, Géron-Landre B, Bonnet I,
. Detection of single DNA molecules by multicolor quantum-dot end-labeling.
Nucleic Acids Research , 2005, 33(11): e98
10.1093/nar/gni097[50] Niu S Y, Jiang Y, Zhang S S. Fluorescence detection for DNA using hybridization chain reaction with enzyme-amplification.
Chemical Communications , 2010, 46(18): 3089–3091
10.1039/c000166j[51] Qin P Z, Niu C G, Zeng G M,
. Time-resolved fluorescence based DNA detection using novel europium ternary complex doped silica nanoparticles.
Talanta , 2009, 80(2): 991–995
10.1016/j.talanta.2009.08.027[52] Niu S Y, Li Q Y, Ren R,
. Enzyme-enhanced fluorescence detection of DNA on etched optical fibers.
Biosensors & Bioelectronics , 2009, 24(9): 2943–2946
10.1016/j.bios.2009.02.022[53] Berdat D, Marin A, Herrera F,
. DNA biosensor using fluorescence microscopy and impedance spectroscopy.
Sensors and Actuators B, Chemical , 2006, 118(1–2): 53–59
10.1016/j.snb.2006.04.064[54] Shaghaghia M, Manzoori J L, Jouyban A. Determination of total phenols in tea infusions, tomato and apple juice by terbium sensitized fluorescence method as an alternative approach to the Folin-Ciocalteu spectrophotometric method.
Food Chemistry , 2008, 108(2): 695–701
10.1016/j.foodchem.2007.11.008[55] Wang X, Zeng H L, Zhao L X,
. Selective determination of bisphenol A (BPA) in water by a reversible fluorescence sensor using pyrene/dimethyl β-cyclodextrin complex.
Analytica Chimica Acta , 2006, 556(2): 313–318
10.1016/j.aca.2005.09.060[56] Krupadam R J, Bhagat B, Wate S R,
. Fluorescence spectrophotometer analysis of polycyclic aromatic hydrocarbons in environmental samples based on solid phase extraction using molecularly imprinted polymer.
Environmental Science & Technology , 2009, 43(8): 2871–2877
10.1021/es802514c[57] Silva R, Masini J, Ribeiro M,
. Improving the fluorescence detectability of polycyclic aromatic hydrocarbons for evaluation of workplace environments of cement industries processing organic residues.
Analytical Letters , 2008, 41(14): 2646–2657
10.1080/00032710802363487[58] Goryacheva I Y, Eremin S A, Shutaleva E A,
. Development of a fluorescence polarization immunoassay for polycyclic aromatic hydrocarbons.
Analytical Letters , 2007, 40(7): 1445–1460
10.1080/00032710701297034[59] Geme G, Brown M A, Simone P Jr,
. Measuring the concentrations of drinking water disinfection by-products using capillary membrane sampling-flow injection analysis.
Water Research , 2005, 39(16): 3827–3836
10.1016/j.watres.2005.07.015[60] Wang Z-D, Yan T, Wang B-H. Study on experiment of fluorescence spectra detection of organic pesticides in soil.
Spectroscopy and Spectral Analysis , 2009, 29(2): 479–482
[61] Qu F G, Zhou X F, Xu J,
. Luminescence switching of CdTe quantum dots in presence of p-sulfonatocalix[4]arene to detect pesticides in aqueous solution.
Talanta , 2009, 78(4-5): 1359–1363
10.1016/j.talanta.2009.02.013[62] Tang J S, Zhang M, Cheng G G,
. Development of fluorescence polarization immunoassay for the detection of organophosphorus pesticides parathion and azinphos-methyl.
Journal of Immunoassay & Immunochemistry , 2008, 29(4): 356–369
10.1080/15321810802329757[63] Sanchez-Barragan I, Karim K, Costa-Fernandez J M,
. A molecularly imprinted polymer for carbaryl determination in water.
Sensors and Actuators B, Chemical , 2007, 123(2): 798–804
10.1016/j.snb.2006.10.026[64] Huang X B, Meng J, Dong Y,
. Polymer-based fluorescence sensor incorporating triazole moieties for Hg
2+ detection via click reaction.
Polymer , 2010, 51(14): 3064–3067
10.1016/j.polymer.2010.05.001[65] Ma B L, Wu S Z, Zeng F,
. Nanosized diblock copolymer micelles as a scaffold for constructing a ratiometric fluorescent sensor for metal ion detection in aqueous media.
Nanotechno- logy , 2010, 21(19): 195501
10.1088/0957-4484/21/19/195501[66] Huang X B, Meng J, Dong Y,
. Polymer-based fluorescence sensors incorporating chiral binaphthyl and benzo[2,1,3]thiadiazole moieties for Hg
2+ detection.
Journal of Polymer Science, Part A, Polymer Chemistry , 2010, 48(5): 997–1006
10.1002/pola.23843[67] Dong Z P, Jin J, Zhao W F,
. Quinoline group grafted carbon nanotube fluorescent sensor for detection of Cu
2+ ion.
Applied Surface Science , 2009, 255(23): 9526–9530
10.1016/j.apsusc.2009.07.089[68] Guo L Q, Hu H, Sun R Q,
. Highly sensitive fluorescent sensor for mercury ion based on photoinduced charge transfer between fluorophore and pi-stacked T-Hg(II)-T base pairs.
Talanta , 2009, 79(3): 775–779
10.1016/j.talanta.2009.05.001[69] Koneswaran M, Narayanaswamy R. L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu
2+ ion.
Sensors and Actuators B, Chemical , 2009, 139(1): 104–109
10.1016/j.snb.2008.09.028[70] Weng Y, Chen Z L, Wang F,
. High sensitive determination of zinc with novel water-soluble small molecular fluorescent sensor.
Analytica Chimica Acta , 2009, 647(2): 215–218
10.1016/j.aca.2009.06.026[71] Mao J, He Q, Liu W S. An “off-on” fluorescence probe for chromium(III) ion determination in aqueous solution.
Analytical and Bioanalytical Chemistry , 2010, 396(3): 1197–1203
10.1007/s00216-009-3161-6[72] Nagatoishi S, Nojima T, Galezowska E,
. Fluorescence energy transfer probes based on the guanine quadruplex formation for the fluorometric detection of potassium ion.
Analytica Chimica Acta , 2007, 581(1): 125–131
10.1016/j.aca.2006.08.010[73] Papadopoulou-Mourkidou E, Patsias J. Development of a semi-automated high-performance liquid chromatographic diode array detection system for screening pesticides at trace levels in aquatic systems of the Axios River basin.
Journal of Chromatography A , 1996, 726(1–2): 99–113
10.1016/0021-9673(95)01072-6[74] Patsias J, Papadopoulou-Mourkidou E. Rapid method for the analysis of a variety of chemical classes of pesticides in surface and ground waters by off-line solid-phase extraction and gas chromatography ion trap mass spectrometry.
Journal of Chromatography A , 1996, 740(1): 83–98
10.1016/0021-9673(96)00099-4[75] Sherma J. Review of advances in the thin layer chromatography of pesticides: 2006–2008.
Journal of Environmental Science and Health Part B: Pesticides, Food Contaminants, and Agricultural Wastes , 2009, 44(3): 193–203
10.1080/03601230902728021[76] García-Reyes J F, Jackson A U, Molina-Díaz A,
. Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in food.
Analytical Chemistry , 2009, 81(2): 820–829
10.1021/ac802166v[77] Xiong D, Li H. Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water.
Nanotechno- logy , 2008, 19(46): 465502
10.1088/0957-4484/19/46/465502[78] Henriksen T, Svensmark B, Lindhardt B,
. Analysis of acidic pesticides using
in situ derivatization with alkylchloroformate and solid-phase microextraction (SPME) for GC-MS.
Chemosphere , 2001, 44(7): 1531–1539
10.1016/S0045-6535(00)00532-4[79] Schlücker S, Roman V, Kiefer W,
. Detection of pesticide model compounds in ethanolic and aqueous microdroplets by nonlinear Raman spectroscopy.
Analytical Chemistry , 2001, 73(13): 3146–3152
10.1021/ac010169a[80] Lacorte S, Quintana J, Tauler R,
. Ultra-trace determination of Persistent Organic Pollutants in Arctic ice using stir bar sorptive extraction and gas chromatography coupled to mass spectrometry.
Journal of Chromatography, A , 2009, 1216(49): 8581–8589
10.1016/j.chroma.2009.10.029[81] Alvarez D A, Petty J D, Huckins J N,
. Development of a passive,
in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments.
Environmental Toxico- logy and Chemistry , 2004, 23(7): 1640–1648
10.1897/03-603[82] Janotta M, Karlowatz M, Vogt F,
. Sol-gel based mid-infrared evanescent wave sensors for detection of organophosphate pesticides in aqueous solution.
Analytica Chimica Acta , 2003, 496(1–2): 339–348
10.1016/S0003-2670(03)01011-0[83] Hassoon S, Schechter I.
In situ fluorimetric determination of pesticides on vegetables.
Analytica Chimica Acta , 2000, 405(1–2): 9–15
10.1016/S0003-2670(99)00747-3[84] Li H P, Li G C, Jen J F. Determination of organochlorine pesticides in water using microwave assisted headspace solid-phase microextraction and gas chromatography.
Journal of Chromatography, A , 2003, 1012(2): 129–137
10.1016/S0021-9673(03)00916-6[85] Zhang S P, Shan L G, Zheng Y,
. Study of enzyme biosensor for monitoring carbamate pesticides in seawater. In: Peng Y, Weng X, editors.
7th Asian-Pacific Conference on Medical and Biological Engineering. Springer Berlin Heidelberg , 2008, 323–325
[86] Andersen H R, Vinggaard A M, Rasmussen T H,
. Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity
in vitro.
Toxicology and Applied Pharmacology , 2002, 179(1): 1–12
10.1006/taap.2001.9347[87] Mackness B, Mackness M I, Arrol S,
. Effect of the molecular polymorphisms of human paraoxonase (PON1) on the rate of hydrolysis of paraoxon.
British Journal of Pharmacology , 1997, 122(2): 265–268
10.1038/sj.bjp.0701390[88] Constantine C A, Gattas-Asfura K M, Mello S V,
. Layer-by-layer films of chitosan, organophosphorus hydrolase and thioglycolic acid-capped CdSe quantum dots for the detection of paraoxon.
The Journal of Physical Chemistry B , 2003, 107(50): 13762–13764
10.1021/jp036381v[89] Isaac A, Wain A J, Compton R G,
. A novel electroreduction strategy for the determination of sulfite.
Analyst , 2005, 130(10): 1343–1344
10.1039/b509721e[90] Kalimuthu P, Tkac J, Kappler U,
. Highly sensitive and stable electrochemical sulfite biosensor incorporating a bacterial sulfite dehydrogenase.
Analytical Chemistry , 2010, 82(17): 7374–7379
10.1021/ac101493y[91] Gamboa J C M, Pe?a R C, Paix?o T R,
. A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples.
Talanta , 2009, 80(2): 581–585
10.1016/j.talanta.2009.07.028[92] Liu T Z, Wang Y, Kounaves S P,
. Determination of organonitriles using enzyme-based selectivity mechanisms. 2. A nitrilase-modified glassy carbon microelectrode sensor for benzonitrile.
Analytical Chemistry , 1995, 67(10): 1679–1683
10.1021/ac00106a005[93] Lou B, Chen Z Q, Bian Z Q,
. Multisignaling detection of cyanide anions based on an iridium(iii) complex: remarkable enhancement of sensitivity by coordination effect.
New Journal of Chemistry , 2010, 34(1): 132–136
10.1039/b9nj00442d[94] Shimomura T, Itoh T, Sumiya T,
. Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials.
Sensors and Actuators B, Chemical , 2008, 135(1): 268–275
10.1016/j.snb.2008.08.025[95] Laothanachareon T, Champreda V, Sritongkham P,
. Cross-linked enzyme crystals of organophosphate hydrolase for electrochemical detection of organophosphorus compounds.
World Journal of Microbiology & Biotechnology , 2008, 24(12): 3049–3055
10.1007/s11274-008-9851-y[96] Andreescu S, Avramescu A, Bala C,
. Detection of organophosphorus insecticides with immobilized acetylcholinesterase- comparative study of two enzyme sensors.
Analytical and Bioanalytical Chemistry , 2002, 374(1): 39–45
10.1007/s00216-002-1442-4[97] Palchetti I, Laschi S, Mascini M. Electrochemical biosensor technology: application to pesticide detection
. Biosensors and Biodetection , 2008, 115–26
[98] Cheng X, Wang Q, Zhang S,
. Determination of four kinds of carbamate pesticides by capillary zone electrophoresis with amperometric detection at a polyamide-modified carbon paste electrode.
Talanta , 2007, 71(3): 1083–1087
10.1016/j.talanta.2006.06.001[99] Wang X, Liu M L, Cheng X L,
. Flow-based luminescence-sensing methods for environmental water analysis.
Trac-Trends in Analytical Chemistry , 2009, 28(1): 75–87
10.1016/j.trac.2008.10.005[100] Crespilho F N, Zucolotto V, Siqueira J R Jr,
. Immobilization of humic acid in nanostructured layer-by-layer films for sensing applications.
Environmental Science & Technology , 2005, 39(14): 5385–5389
10.1021/es050552n[101] Drummond I, Van Roosmalen P B, Kornicki M. Determination of total pentachlorophenol in the urine of workers. A method incorporating hydrolysis, an internal standard and measurement by liquid chromatography.
International Archives of Occupational and Environmental Health , 1982, 50(4): 321–327
10.1007/BF00377828[102] Pekari K, Luotamo M, J?rvisalo J,
. Urinary excretion of chlorinated phenols in saw-mill workers.
International Archives of Occupational and Environmental Health , 1991, 63(1): 57–62
10.1007/BF00406199[103] Wang H, Wang J, Timchalk C,
. Magnetic electrochemical immunoassays with quantum dot labels for detection of phosphorylated acetylcholinesterase in plasma.
Analytical Chemistry , 2008, 80(22): 8477–8484
10.1021/ac801211s