Optical and electrical nano eco-sensors using alternative deposition of charged layer

Syed Rahin AHMED, Seong Cheol HONG, Jaebeom LEE()

PDF(287 KB)
PDF(287 KB)
Front. Mater. Sci. ›› 2011, Vol. 5 ›› Issue (1) : 40-49. DOI: 10.1007/s11706-011-0117-5
REVIEW ARTICLE
REVIEW ARTICLE

Optical and electrical nano eco-sensors using alternative deposition of charged layer

  • Syed Rahin AHMED, Seong Cheol HONG, Jaebeom LEE()
Author information +
History +

Abstract

This review focuses on layer by layer (LBL) assembly-based nano ecological sensor (hereafter, eco-sensor) for pesticide detection, which is one of the most versatile methods. The effects of pesticides on human health and on the environment (air, water, soil, plants, and animals) are of great concern due to their increasing use. We highlight two of the most popular detecting methods, i.e., fluorescence and electrochemical detection of pesticides on an LBL assembly. Fluorescence materials are of great interest among researchers for their sensitivity and reliable detection, and electrochemical processes allow us to investigate synergistic interactions among film components through charge transfer mechanisms in LBL film at the molecular level. Then, we noted some prospective directions for development of different types of sensing systems.

Keywords

pesticides / fluorescence / electrochemistry / layer by layer (LBL)

Cite this article

Download citation ▾
Syed Rahin AHMED, Seong Cheol HONG, Jaebeom LEE. Optical and electrical nano eco-sensors using alternative deposition of charged layer. Front Mater Sci, 2011, 5(1): 40‒49 https://doi.org/10.1007/s11706-011-0117-5

References

[1] Grieshaber D, MacKenzie R, V?r?s J, . Electrochemical biosensors- sensor principles and architectures. Sensors , 2008, 8(3): 1400–1458 10.3390/s8031400
[2] Obare S O, De C, Guo W, . Fluorescent chemosensors for toxic organophosphorus pesticides: a review. Sensors , 2010, 10(7): 7018–7043 10.3390/s100707018
[3] Paul P, Shim B S, Kotov N A. Polymer/clay and polymer/carbon nanotube hybrid organic-inorganic multilayered composites made by sequential layering of nanometer scale films. Coordination Chemistry Reviews , 2009, 253(23–24): 2835–2851
[4] Wang L Z, Tang F Q, Ozawa K, . Layer-by-layer assembled thin films of inorganic nanomaterials: fabrication and photo-electrochemical properties. International Journal of Surface Science and Engineering , 2009, 3(1–2): 44–63 10.1504/IJSURFSE.2009.024361
[5] del Mercato L L, Rivera-Gil P, Abbasi A Z, . LbL multilayer capsules: recent progress and future outlook for their use in life sciences. Nanoscale , 2010, 2(4): 458–467 10.1039/b9nr00341j
[6] Ji Y L, An Q F, Qian J W, . Nanofiltration membranes prepared by layer-by-layer self-assembly of polyelectrolyte. Progress in Chemistry , 2010, 22(1): 119–124
[7] Ariga K, Hill J P, Ji Q M. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Physical Chemistry Chemical Physics , 2007, 9(19): 2319–2340 10.1039/b700410a
[8] Johnston A P R, Cortez C, Angelatos A S, . Layer-by-layer engineered capsules and their applications. Current Opinion in Colloid & Interface Science , 2006, 11(4): 203–209 10.1016/j.cocis.2006.05.001
[9] Zhao W, Xu J J, Chen H Y. Electrochemical biosensors based on layer-by-layer assemblies. Electroanalysis , 2006, 18(18): 1737–1748 10.1002/elan.200603630
[10] Srivastava S, Kotov N A. Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Accounts of Chemical Research , 2008, 41(12): 1831–1841 10.1021/ar8001377
[11] Kotov N A, Dekany I, Fendler J H. Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films. The Journal of Physical Chemistry , 1995, 99(35): 13065–13069 10.1021/j100035a005
[12] Mamedov A A, Kotov N A, Prato M, . Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nature Materials , 2002, 1(3): 190–194 10.1038/nmat747
[13] Keller S W, Kim H N, Mallouk T E. Layer-by-layer assembly of intercalation compounds and heterostructures on surfaces: toward molecular “beaker” epitaxy. Journal of the American Chemical Society , 1994, 116(19): 8817–8818 10.1021/ja00098a055
[14] He J A, Valluzzi R, Yang K, . Electrostatic multilayer deposition of a gold-dendrimer nanocomposite. Chemistry of Materials , 1999, 11(11): 3268–3274 10.1021/cm990311c
[15] Araki K, Wagner M J, Wrighton M S. Layer-by-layer growth of electrostatically assembled multilayer porphyrin films. Langmuir , 1996, 12(22): 5393–5398 10.1021/la960024c
[16] Lvov Y, Onda M, Ariga K, . Ultrathin films of charged polysaccharides assembled alternately with linear polyions. Journal of Biomaterials Science, Polymer Edition , 1998, 9(4): 345–355
[17] Richert L, Lavalle Ph, Vautier D, . Cell interactions with polyelectrolyte multilayer films. Biomacromolecules , 2002, 3(6): 1170–1178 10.1021/bm0255490
[18] Boulmedais F, Ball V, Schwinte P, . Buildup of exponentially growing multilayer polypeptide films with internal secondary structure. Langmuir , 2003, 19(2): 440–445 10.1021/la0264522
[19] Lvov Yu, Decher G, Sukhorukov G. Assembly of thin films by means of successive deposition of alternate layers of DNA and poly(allylamine). Macromolecules , 1993, 26(20): 5396–5399 10.1021/ma00072a016
[20] Hong J, Lowack K, Schmitt J, . Layer-by-layer deposited multilayer assemblies of polyelectrolytes and proteins: from ultrathin films to protein arrays. In: Laggner P, Glatter O, editors. Trends in Colloid and Interface Science VII: Springer Berlin/Heidelberg , 1993: 98–102 10.1007/BFb0118482
[21] Lvov Y, Ariga K, Kunitake T. Layer-by-layer assembly of alternate protein polyion ultrathin films. Chemistry Letters , 1994, 23(12): 2323–2326 10.1246/cl.1994.2323
[22] Yoo P J, Nam K T, Qi J, . Spontaneous assembly of viruses on multilayered polymer surfaces. Nature Materials , 2006, 5(3): 234–240 10.1038/nmat1596
[23] Zhai L, Cebeci F C, Cohen R E, et al. Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Letters , 2004, 4(7): 1349–1353 10.1021/nl049463j
[24] Zhai L, Berg M C, Cebeci F C, . Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle. Nano Letters , 2006, 6(6): 1213–1217 10.1021/nl060644q
[25] Tang Z Y, Wang Y, Podsiadlo P, . Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Advanced Materials , 2006, 18(24): 3203–3224 10.1002/adma.200600113
[26] Wood K C, Chuang H F, Batten R D, . Controlling interlayer diffusion to achieve sustained, multiagent delivery from layer-by-layer thin films. Proceedings of the National Academy of Sciences of the United States of America , 2006, 103(27): 10207–10212 10.1073/pnas.0602884103
[27] Jewell C M, Zhang J T, Fredin N J, . Multilayered polyelectrolyte films promote the direct and localized delivery of DNA to cells. Journal of Controlled Release , 2005, 106(1–2): 214–223 10.1016/j.jconrel.2005.04.014
[28] Podsiadlo P, Sui L, Elkasabi Y, . Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir , 2007, 23(15): 7901–7906 10.1021/la700772a
[29] Hiller J, Mendelsohn J D, Rubner M F. Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers. Nature Materials , 2002, 1(1): 59–63 10.1038/nmat719
[30] DeLongchamp D M, Hammond P T. High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Advanced Functional Materials , 2004, 14(3): 224–232 10.1002/adfm.200304507
[31] Moriguchi I, Fendler J H. Characterization and electrochromic properties of ultrathin films self-assembled from poly(diallyldimethylammonium) chloride and sodium decatungstate. Che-mistry of Materials , 1998, 10(8): 2205–2211 10.1021/cm980127b
[32] Heuberger R, Sukhorukov G, Voros J, . Biofunctional polyelectrolyte multilayers and microcapsules: Control of non-specific and bio-specific protein adsorption. Advanced Functional Materials , 2005, 15(3): 357–366 10.1002/adfm.200400063
[33] Hodak J, Etchenique R, Calvo E J, . Layer-by-layer self-assembly of glucose oxidase with a poly(allylamine)ferrocene redox mediator. Langmuir , 1997, 13(10): 2708–2716 10.1021/la962014h
[34] He P, Bayachou M. Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles. Langmuir , 2005, 21(13): 6086–6092 10.1021/la050581b
[35] Yang M, Yang Y, Yang H, . Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials , 2006, 27(2): 246–255 10.1016/j.biomaterials.2005.05.077
[36] Zhang H, Lu H, Hu N. Fabrication of electroactive layer-by-layer films of myoglobin with gold nanoparticles of different sizes.The Journal of Physical Chemistry B , 2006, 110(5): 2171–2179 10.1021/jp055301f
[37] Zhai L, Berg M C, Cebeci F C, . Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle. Nano Letters , 2006, 6(6): 1213–1217 10.1021/nl060644q
[38] Zhang J, Senger B, Vautier D, . Natural polyelectrolyte films based on layer-by-layer deposition of collagen and hyaluronic acid. Biomaterials , 2005, 26(16): 3353–3361 10.1016/j.biomaterials.2004.08.019
[39] Mamedov A A, Belov A, Giersig M, . Nanorainbows: graded semiconductor films from quantum dots. Journal of the American Chemical Society , 2001, 123(31): 7738–7739 10.1021/ja015857q
[40] Wang D, Rogach A L, Caruso F. Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly. Nano Letters , 2002, 2(8): 857–861 10.1021/nl025624c
[41] Shim B S, Podsiadlo P, Lilly D G, . Nanostructured thin films made by dewetting method of layer-by-layer assembly. Nano Letters , 2007, 7(11): 3266–3273 10.1021/nl071245d
[42] Podsiadlo P, Paternel S, Rouillard J M, . Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties. Langmuir , 2005, 21(25): 11915–11921 10.1021/la051284+
[43] Billingsley K, Balaconis M K, Dubach J M, . Fluorescent nano-optodes for glucose detection. Analytical Chemistry , 2010, 82(9): 3707–3713 10.1021/ac100042e
[44] Duong H D, Rhee J I. Use of CdSe/ZnS core-shell quantum dots as energy transfer donors in sensing glucose. Talanta , 2007, 73(5): 899–905 10.1016/j.talanta.2007.05.011
[45] Tang B, Cao L H, Xu K H, . A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Chemistry , 2008, 14(12): 3637–3644 10.1002/chem.200701871
[46] Gill R, Bahshi L, Freeman R, . Optical detection of glucose and acetylcholine esterase inhibitors by H2O2-sensitive CdSe/ZnS quantum dots. Angewandte Chemie International Edition , 2008, 47(9): 1676–1679 10.1002/anie.200704794
[47] Xiao Y, Barker P E. Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Research , 2004, 32(3): e2810.1093/nar/gnh024
[48] Zhang C Y, Yeh H C, Kuroki M T, . Single-quantum-dot-based DNA nanosensor. Nature Materials , 2005, 4(11): 826–831 10.1038/nmat1508
[49] Crut A, Géron-Landre B, Bonnet I, . Detection of single DNA molecules by multicolor quantum-dot end-labeling. Nucleic Acids Research , 2005, 33(11): e9810.1093/nar/gni097
[50] Niu S Y, Jiang Y, Zhang S S. Fluorescence detection for DNA using hybridization chain reaction with enzyme-amplification. Chemical Communications , 2010, 46(18): 3089–3091 10.1039/c000166j
[51] Qin P Z, Niu C G, Zeng G M, . Time-resolved fluorescence based DNA detection using novel europium ternary complex doped silica nanoparticles. Talanta , 2009, 80(2): 991–995 10.1016/j.talanta.2009.08.027
[52] Niu S Y, Li Q Y, Ren R, . Enzyme-enhanced fluorescence detection of DNA on etched optical fibers. Biosensors & Bioelectronics , 2009, 24(9): 2943–2946 10.1016/j.bios.2009.02.022
[53] Berdat D, Marin A, Herrera F, . DNA biosensor using fluorescence microscopy and impedance spectroscopy. Sensors and Actuators B, Chemical , 2006, 118(1–2): 53–59 10.1016/j.snb.2006.04.064
[54] Shaghaghia M, Manzoori J L, Jouyban A. Determination of total phenols in tea infusions, tomato and apple juice by terbium sensitized fluorescence method as an alternative approach to the Folin-Ciocalteu spectrophotometric method. Food Chemistry , 2008, 108(2): 695–701 10.1016/j.foodchem.2007.11.008
[55] Wang X, Zeng H L, Zhao L X, . Selective determination of bisphenol A (BPA) in water by a reversible fluorescence sensor using pyrene/dimethyl β-cyclodextrin complex. Analytica Chimica Acta , 2006, 556(2): 313–318 10.1016/j.aca.2005.09.060
[56] Krupadam R J, Bhagat B, Wate S R, . Fluorescence spectrophotometer analysis of polycyclic aromatic hydrocarbons in environmental samples based on solid phase extraction using molecularly imprinted polymer. Environmental Science & Technology , 2009, 43(8): 2871–2877 10.1021/es802514c
[57] Silva R, Masini J, Ribeiro M, . Improving the fluorescence detectability of polycyclic aromatic hydrocarbons for evaluation of workplace environments of cement industries processing organic residues. Analytical Letters , 2008, 41(14): 2646–2657 10.1080/00032710802363487
[58] Goryacheva I Y, Eremin S A, Shutaleva E A, . Development of a fluorescence polarization immunoassay for polycyclic aromatic hydrocarbons. Analytical Letters , 2007, 40(7): 1445–1460 10.1080/00032710701297034
[59] Geme G, Brown M A, Simone P Jr, . Measuring the concentrations of drinking water disinfection by-products using capillary membrane sampling-flow injection analysis. Water Research , 2005, 39(16): 3827–3836 10.1016/j.watres.2005.07.015
[60] Wang Z-D, Yan T, Wang B-H. Study on experiment of fluorescence spectra detection of organic pesticides in soil. Spectroscopy and Spectral Analysis , 2009, 29(2): 479–482
[61] Qu F G, Zhou X F, Xu J, . Luminescence switching of CdTe quantum dots in presence of p-sulfonatocalix[4]arene to detect pesticides in aqueous solution. Talanta , 2009, 78(4-5): 1359–1363 10.1016/j.talanta.2009.02.013
[62] Tang J S, Zhang M, Cheng G G, . Development of fluorescence polarization immunoassay for the detection of organophosphorus pesticides parathion and azinphos-methyl. Journal of Immunoassay & Immunochemistry , 2008, 29(4): 356–369 10.1080/15321810802329757
[63] Sanchez-Barragan I, Karim K, Costa-Fernandez J M, . A molecularly imprinted polymer for carbaryl determination in water. Sensors and Actuators B, Chemical , 2007, 123(2): 798–804 10.1016/j.snb.2006.10.026
[64] Huang X B, Meng J, Dong Y, . Polymer-based fluorescence sensor incorporating triazole moieties for Hg2+ detection via click reaction. Polymer , 2010, 51(14): 3064–3067 10.1016/j.polymer.2010.05.001
[65] Ma B L, Wu S Z, Zeng F, . Nanosized diblock copolymer micelles as a scaffold for constructing a ratiometric fluorescent sensor for metal ion detection in aqueous media. Nanotechno- logy , 2010, 21(19): 19550110.1088/0957-4484/21/19/195501
[66] Huang X B, Meng J, Dong Y, . Polymer-based fluorescence sensors incorporating chiral binaphthyl and benzo[2,1,3]thiadiazole moieties for Hg2+ detection. Journal of Polymer Science, Part A, Polymer Chemistry , 2010, 48(5): 997–1006 10.1002/pola.23843
[67] Dong Z P, Jin J, Zhao W F, . Quinoline group grafted carbon nanotube fluorescent sensor for detection of Cu2+ ion. Applied Surface Science , 2009, 255(23): 9526–9530 10.1016/j.apsusc.2009.07.089
[68] Guo L Q, Hu H, Sun R Q, . Highly sensitive fluorescent sensor for mercury ion based on photoinduced charge transfer between fluorophore and pi-stacked T-Hg(II)-T base pairs. Talanta , 2009, 79(3): 775–779 10.1016/j.talanta.2009.05.001
[69] Koneswaran M, Narayanaswamy R. L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sensors and Actuators B, Chemical , 2009, 139(1): 104–109 10.1016/j.snb.2008.09.028
[70] Weng Y, Chen Z L, Wang F, . High sensitive determination of zinc with novel water-soluble small molecular fluorescent sensor. Analytica Chimica Acta , 2009, 647(2): 215–218 10.1016/j.aca.2009.06.026
[71] Mao J, He Q, Liu W S. An “off-on” fluorescence probe for chromium(III) ion determination in aqueous solution. Analytical and Bioanalytical Chemistry , 2010, 396(3): 1197–1203 10.1007/s00216-009-3161-6
[72] Nagatoishi S, Nojima T, Galezowska E, . Fluorescence energy transfer probes based on the guanine quadruplex formation for the fluorometric detection of potassium ion. Analytica Chimica Acta , 2007, 581(1): 125–131 10.1016/j.aca.2006.08.010
[73] Papadopoulou-Mourkidou E, Patsias J. Development of a semi-automated high-performance liquid chromatographic diode array detection system for screening pesticides at trace levels in aquatic systems of the Axios River basin. Journal of Chromatography A , 1996, 726(1–2): 99–113 10.1016/0021-9673(95)01072-6
[74] Patsias J, Papadopoulou-Mourkidou E. Rapid method for the analysis of a variety of chemical classes of pesticides in surface and ground waters by off-line solid-phase extraction and gas chromatography ion trap mass spectrometry. Journal of Chromatography A , 1996, 740(1): 83–98 10.1016/0021-9673(96)00099-4
[75] Sherma J. Review of advances in the thin layer chromatography of pesticides: 2006–2008. Journal of Environmental Science and Health Part B: Pesticides, Food Contaminants, and Agricultural Wastes , 2009, 44(3): 193–203 10.1080/03601230902728021
[76] García-Reyes J F, Jackson A U, Molina-Díaz A, . Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in food. Analytical Chemistry , 2009, 81(2): 820–829 10.1021/ac802166v
[77] Xiong D, Li H. Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nanotechno- logy , 2008, 19(46): 46550210.1088/0957-4484/19/46/465502
[78] Henriksen T, Svensmark B, Lindhardt B, . Analysis of acidic pesticides using in situ derivatization with alkylchloroformate and solid-phase microextraction (SPME) for GC-MS. Chemosphere , 2001, 44(7): 1531–1539 10.1016/S0045-6535(00)00532-4
[79] Schlücker S, Roman V, Kiefer W, . Detection of pesticide model compounds in ethanolic and aqueous microdroplets by nonlinear Raman spectroscopy. Analytical Chemistry , 2001, 73(13): 3146–3152 10.1021/ac010169a
[80] Lacorte S, Quintana J, Tauler R, . Ultra-trace determination of Persistent Organic Pollutants in Arctic ice using stir bar sorptive extraction and gas chromatography coupled to mass spectrometry. Journal of Chromatography, A , 2009, 1216(49): 8581–8589 10.1016/j.chroma.2009.10.029
[81] Alvarez D A, Petty J D, Huckins J N, . Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environmental Toxico- logy and Chemistry , 2004, 23(7): 1640–1648 10.1897/03-603
[82] Janotta M, Karlowatz M, Vogt F, . Sol-gel based mid-infrared evanescent wave sensors for detection of organophosphate pesticides in aqueous solution. Analytica Chimica Acta , 2003, 496(1–2): 339–348 10.1016/S0003-2670(03)01011-0
[83] Hassoon S, Schechter I. In situ fluorimetric determination of pesticides on vegetables. Analytica Chimica Acta , 2000, 405(1–2): 9–15 10.1016/S0003-2670(99)00747-3
[84] Li H P, Li G C, Jen J F. Determination of organochlorine pesticides in water using microwave assisted headspace solid-phase microextraction and gas chromatography. Journal of Chromatography, A , 2003, 1012(2): 129–137 10.1016/S0021-9673(03)00916-6
[85] Zhang S P, Shan L G, Zheng Y, . Study of enzyme biosensor for monitoring carbamate pesticides in seawater. In: Peng Y, Weng X, editors. 7th Asian-Pacific Conference on Medical and Biological Engineering. Springer Berlin Heidelberg , 2008, 323–325
[86] Andersen H R, Vinggaard A M, Rasmussen T H, . Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicology and Applied Pharmacology , 2002, 179(1): 1–12 10.1006/taap.2001.9347
[87] Mackness B, Mackness M I, Arrol S, . Effect of the molecular polymorphisms of human paraoxonase (PON1) on the rate of hydrolysis of paraoxon. British Journal of Pharmacology , 1997, 122(2): 265–268 10.1038/sj.bjp.0701390
[88] Constantine C A, Gattas-Asfura K M, Mello S V, . Layer-by-layer films of chitosan, organophosphorus hydrolase and thioglycolic acid-capped CdSe quantum dots for the detection of paraoxon. The Journal of Physical Chemistry B , 2003, 107(50): 13762–13764 10.1021/jp036381v
[89] Isaac A, Wain A J, Compton R G, . A novel electroreduction strategy for the determination of sulfite. Analyst , 2005, 130(10): 1343–1344 10.1039/b509721e
[90] Kalimuthu P, Tkac J, Kappler U, . Highly sensitive and stable electrochemical sulfite biosensor incorporating a bacterial sulfite dehydrogenase. Analytical Chemistry , 2010, 82(17): 7374–7379 10.1021/ac101493y
[91] Gamboa J C M, Pe?a R C, Paix?o T R, . A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples. Talanta , 2009, 80(2): 581–585 10.1016/j.talanta.2009.07.028
[92] Liu T Z, Wang Y, Kounaves S P, . Determination of organonitriles using enzyme-based selectivity mechanisms. 2. A nitrilase-modified glassy carbon microelectrode sensor for benzonitrile. Analytical Chemistry , 1995, 67(10): 1679–1683 10.1021/ac00106a005
[93] Lou B, Chen Z Q, Bian Z Q, . Multisignaling detection of cyanide anions based on an iridium(iii) complex: remarkable enhancement of sensitivity by coordination effect. New Journal of Chemistry , 2010, 34(1): 132–136 10.1039/b9nj00442d
[94] Shimomura T, Itoh T, Sumiya T, . Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sensors and Actuators B, Chemical , 2008, 135(1): 268–275 10.1016/j.snb.2008.08.025
[95] Laothanachareon T, Champreda V, Sritongkham P, . Cross-linked enzyme crystals of organophosphate hydrolase for electrochemical detection of organophosphorus compounds. World Journal of Microbiology & Biotechnology , 2008, 24(12): 3049–3055 10.1007/s11274-008-9851-y
[96] Andreescu S, Avramescu A, Bala C, . Detection of organophosphorus insecticides with immobilized acetylcholinesterase- comparative study of two enzyme sensors. Analytical and Bioanalytical Chemistry , 2002, 374(1): 39–45 10.1007/s00216-002-1442-4
[97] Palchetti I, Laschi S, Mascini M. Electrochemical biosensor technology: application to pesticide detection. Biosensors and Biodetection , 2008, 115–26
[98] Cheng X, Wang Q, Zhang S, . Determination of four kinds of carbamate pesticides by capillary zone electrophoresis with amperometric detection at a polyamide-modified carbon paste electrode. Talanta , 2007, 71(3): 1083–1087 10.1016/j.talanta.2006.06.001
[99] Wang X, Liu M L, Cheng X L, . Flow-based luminescence-sensing methods for environmental water analysis. Trac-Trends in Analytical Chemistry , 2009, 28(1): 75–87 10.1016/j.trac.2008.10.005
[100] Crespilho F N, Zucolotto V, Siqueira J R Jr, . Immobilization of humic acid in nanostructured layer-by-layer films for sensing applications. Environmental Science & Technology , 2005, 39(14): 5385–5389 10.1021/es050552n
[101] Drummond I, Van Roosmalen P B, Kornicki M. Determination of total pentachlorophenol in the urine of workers. A method incorporating hydrolysis, an internal standard and measurement by liquid chromatography. International Archives of Occupational and Environmental Health , 1982, 50(4): 321–327 10.1007/BF00377828
[102] Pekari K, Luotamo M, J?rvisalo J, . Urinary excretion of chlorinated phenols in saw-mill workers. International Archives of Occupational and Environmental Health , 1991, 63(1): 57–62 10.1007/BF00406199
[103] Wang H, Wang J, Timchalk C, . Magnetic electrochemical immunoassays with quantum dot labels for detection of phosphorylated acetylcholinesterase in plasma. Analytical Chemistry , 2008, 80(22): 8477–8484 10.1021/ac801211s
AI Summary AI Mindmap
PDF(287 KB)

Accesses

Citations

Detail

Sections
Recommended

/