[1] Seunarine K, Gadegaard N, Tormen M,
. 3D polymer scaffolds for tissue engineering.
Nanomedicine , 2006, 1(3): 281-296
10.2217/17435889.1.3.281[2] Hollister S J. Porous scaffold design for tissue engineering.
Nature Materials , 2005, 4(7): 518-524
10.1038/nmat1421[3] Kretlow J D, Mikos A G. From material to tissue: Biomaterial development, scaffold fabrication, and tissue engineering.
AIChE Journal , 2008, 54(12): 3048-3067
10.1002/aic.11610[4] Rosa A L, de Oliveira P T, Beloti M M. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
Expert Review of Medical Devices , 2008, 5(6): 719-728
10.1586/17434440.5.6.719[5] Leong K F, Cheah C M, Chua C K. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs.
Biomaterials , 2003, 24(13): 2363-2378
10.1016/S0142-9612(03)00030-9[6] Hutmacher D W, Sittinger M, Risbud M V. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems.
Trends in Biotechnology , 2004, 22(7): 354-362
10.1016/j.tibtech.2004.05.005[7] Yeong W Y, Chua C K, Leong K F,
. Rapid prototyping in tissue engineering: challenges and potential.
Trends in Biotechnology , 2004, 22(12): 643-652
10.1016/j.tibtech.2004.10.004[8] Kochan D. Solid freeform manufacturing-possibilities and restrictions.
Computers in Industry , 1992, 20(2): 133-140
10.1016/0166-3615(92)90047-Q[9] Borah B, Gross G J, Dufresne T E,
. Three-dimensional microimaging (MRmicrol and microCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis.
The Anatomical Record , 2001, 265(2): 101-110
10.1002/ar.1060[10] Ratner B D, Bryant S J. Biomaterials: where we have been and where we are going.
Annual Review of Biomedical Engineering , 2004, 6(1): 41-75
10.1146/annurev.bioeng.6.040803.140027[11] Boyan B D, Hummert T W, Dean D D,
. Role of material surfaces in regulating bone and cartilage cell response.
Biomaterials , 1996, 17(2): 137-146
10.1016/0142-9612(96)85758-9[12] Ma Z W, Mao Z W, Gao C Y. Surface modification and property analysis of biomedical polymers used for tissue engineering.
Colloids and Surfaces B: Biointerfaces , 2007, 60(2): 137-157
10.1016/j.colsurfb.2007.06.019[13] Goddard J M, Hotchkiss J H. Polymer surface modification for the attachment of bioactive compounds.
Progress in Polymer Science , 2007, 32(7): 698-725
10.1016/j.progpolymsci.2007.04.002[14] Shin Y M, Kim K-S, Lim Y M,
. Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin-immobilized poly(L-lactide-
co-?-caprolactone) substrates.
Biomacromolecules , 2008, 9(7): 1772-1781
10.1021/bm701410g[15] Duan B, Wang M, Zhou W Y,
. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering.
Acta Biomaterialia , 2010, doi:10.1016/j.actbio.2010.06.024 (in press)
10.1016/j.actbio.2010.06.02410.1016/j.actbio.2010.06.024[16] Duan B, Wang M, Zhou W Y,
. Synthesis of Ca-P nanoparticles and fabrication of Ca-P/PHBV microspheres for bone tissue engineering applications.
Applied Surface Science , 2008, 255(2): 529-533
10.1016/j.apsusc.2008.06.057[17] Zhou W Y, Lee S H, Wang M,
. Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres.
Journal of Materials Science: Materials in Medicine , 2008, 19(7): 2535-2540
10.1007/s10856-007-3089-3[18] Desai N P, Hubbell J A. Surface physical interpenetrating networks of poly(ethylene terephthalate) and poly(ethylene oxide) with biomedical application.
Macromolecules , 1992, 25(1): 226-232
10.1021/ma00027a038[19] Quirk R A, Davies M C, Tendler S J B,
. Surface engineering of poly(lactic acid) by entrapment of modifying species.
Macromolecules , 2000, 33(2): 258-260
10.1021/ma9916133[20] Kumar A, Bansal V, Nandakumar K S,
. Integrated bioprocess for the production and isolation of urokinase from animal cell culture using supermacroporous cryogel matrices.
Biotechnology and Bioengineering , 2006, 93(4): 636-646
10.1002/bit.20719[21] Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis.
Biomaterials , 2005, 26(27): 5474-5491
10.1016/j.biomaterials.2005.02.002[22] Salgado A J, Coutinho O P, Reis R L. Bone tissue engineering: state of the art and future trends.
Macromolecular Bioscience , 2004, 4(8): 743-765
10.1002/mabi.200400026[23] Williams J M, Adewunmi A, Schek R M,
. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
Biomaterials , 2005, 26(23): 4817-4827
10.1016/j.biomaterials.2004.11.057[24] Hao L, Savalani M M, Zhang Y,
. Characterization of selective laser-sintered hydroxyapatite-based biocomposite structures for bone replacement.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences , 2007, 463(2084): 1857-1869
10.1098/rspa.2007.1854[25] Anselme K. Osteoblast adhesion on biomaterials.
Biomaterials , 2000, 21(7): 667-681
10.1016/S0142-9612(99)00242-2[26] Katti D S, Vasita R, Shanmugam K. Improved biomaterials for tissue engineering applications: surface modification of polymers.
Current Topics in Medicinal Chemistry , 2008, 8(4): 341-353
10.2174/156802608783790893[27] Wang X Q, Wenk E, Hu X,
. Silk coatings on PLGA and alginate microspheres for protein delivery.
Biomaterials , 2007, 28(28): 4161-4169
10.1016/j.biomaterials.2007.05.036[28] Lee J-Y, Choo J-E, Choi Y-S,
. Characterization of the surface immobilized synthetic heparin binding domain derived from human fibroblast growth factor-2 and its effect on osteoblast differentiation.
Journal of Biomedical Materials Research, Part A , 2007, 83A(4): 970-979
10.1002/jbm.a.31351[29] Cai K Y, Yao K D, Yang Z M,
. Surface modification of three-dimensional poly(d,l-lactic acid) scaffolds with baicalin: a histological study.
Acta Biomaterialia , 2007, 3(4): 597-605
10.1016/j.actbio.2006.12.005[30] Liu Z H, Jiao Y P, Zhang Z Y,
. Surface modification of poly(L-lactic acid) by entrapment of chitosan and its derivatives to promote osteoblasts-like compatibility.
Journal of Biomedical Materials Research, Part A , 2007, 83A(4): 1110-1116
10.1002/jbm.a.31453[31] Liu X H, Won Y J, Ma P X. Surface modification of interconnected porous scaffolds.
Journal of Biomedical Materials Research, Part A , 2005, 74A(1): 84-91
10.1002/jbm.a.30367[32] Pereira M L, Carvalho J C, Peres F,
. Effect of nicotine in matrix mineralization by human bone marrow and Saos-2 cells cultured on the surface of plasma-sprayed titanium implants.
Journal of Biomedical Materials Research, Part A , 2009, 88A(1): 84-93
10.1002/jbm.a.31873[33] Amaral M, Dias A G, Gomes P S,
. Nanocrystalline diamond:
In vitro biocompatibility assessment by MG63 and human bone marrow cells cultures.
Journal of Biomedical Materials Research, Part A , 2008, 87A(1): 91-99
10.1002/jbm.a.31742