Biogenic nanoparticles and mineral composition in the radula of chiton Acanthochitonrubrolineatus

Chuan-lin LIU, Xiao-jie CHENG, Jian-gao ZHAO, Xia QIAN, Cheng-hua GUO, De-jiao YU, Xi-guang CHEN

PDF(312 KB)
PDF(312 KB)
Front. Mater. Sci. ›› 2009, Vol. 3 ›› Issue (3) : 248-254. DOI: 10.1007/s11706-009-0046-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Biogenic nanoparticles and mineral composition in the radula of chiton Acanthochitonrubrolineatus

Author information +
History +

Abstract

Magnetite particles were confirmed to deposit in the radula of chiton Acanthochiton rubrolineatus, and these magnetite particles presented as chip-shaped pieces which were 150 nm in width. Many nano-scale crystals constructed each piece of the magnetite particles. The mean size of a single crystal was 52 nm in diameter. Calcium composites were found to coexist with iron minerals. The total amount of magnetite in the chiton radula was 10% (w/w) of the radula weight, and 41% (w/w) of the total minerals. Eight metal elements were measured in the chiton radula, among which iron was a major element (14.6%, w/w) of the radula, followed by sodium, magnesium, calcium, potassium, chromium, manganese and cobalt in turn.

Keywords

biomineralization / nanoparticle / magnetite / radula / chiton

Cite this article

Download citation ▾
Chuan-lin LIU, Xiao-jie CHENG, Jian-gao ZHAO, Xia QIAN, Cheng-hua GUO, De-jiao YU, Xi-guang CHEN. Biogenic nanoparticles and mineral composition in the radula of chiton Acanthochitonrubrolineatus. Front Mater Sci Chin, 2009, 3(3): 248‒254 https://doi.org/10.1007/s11706-009-0046-8

References

[1]
Osterloh F E. Directional superparamagnetism and photoluminescence in clusters of magnetite and cadmium selenide nanoparticles. Comments on Inorganic Chemistry, 2006, 27(1-2): 41-59
CrossRef Google scholar
[2]
Xiao X, He Q, Huang K. Possible magnetic multifunctional nanoplatforms in medicine. Medical Hypotheses, 2007, 68(3): 680-682
CrossRef Google scholar
[3]
Moghimi S M, Hunter A C H, Murray J C. Long-circulating and target specific nanoparticles: theory to practice. Pharmacological Reviews, 2001, 53(2): 283-318
[4]
Asif M, Arayne S, Sultana N, . Fabrication of nanoparticles within polymeric pores for controlled release of drug. Pakistan Journal of Pharmaceutical Sciences, 2006, 19(1): 73-84
[5]
Berry C C, Curtis A S G. Function of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 2003, 36(13): 198-206
CrossRef Google scholar
[6]
Bucak S, Jones D A, Laibinis P E, . Protein separations using colloidal magnetic nanoparticles. Biotechnology Progress, 2003, 19(2): 477-484
CrossRef Google scholar
[7]
Pankhurst Q A, Connolly J, Jones S K, . Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics, 2003, 36(13): 167-181
CrossRef Google scholar
[8]
Albrecht M, Janke V, Sievers S, . Scanning force microscopy study of biogenic nanoparticles for medical applications. Journal of Magnetism and Magnetic Materials, 2005, 290-291(1): 269-271
CrossRef Google scholar
[9]
Cheng F Y, Yang Y S, Ye C S, . Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials, 2005, 26(7): 729-738
CrossRef Google scholar
[10]
Kawashita M, Tanaka M, Kokubo T, . Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials, 2005, 26(15): 2231-2238
CrossRef Google scholar
[11]
Xu C J, Sun S H. Monodisperse magnetic nanoparticles for biomedical applications. Polymer International, 2007, 56(7):β821-826
CrossRef Google scholar
[12]
Sun J, Zhou S, Hou P, . Synthesis and characterization of biocompatible Fe3O4 nanoparticles. Journal of Biomedical Materials Research A, 2007, 80(2): 333-341
CrossRef Google scholar
[13]
Wu W, He Q G, Jiang C Z. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Research Letters, 2008, 3(11): 397-415
CrossRef Google scholar
[14]
Blakemore R P. Magnetotactic bacteria. Science, 1975, 190(4213): 377-379
CrossRef Google scholar
[15]
Mora C V, Davison M, Wild J M, . Magnetoreception and its trigeminal mediation in the homing pigeon. Nature, 2004, 432(7016): 508-511
CrossRef Google scholar
[16]
Hsu C Y, Li C W. Magnetoreception in honeybees. Science, 1994, 265(5168): 95-97
CrossRef Google scholar
[17]
Dobson J. Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Letters, 2001, 496(1): 1-5
CrossRef Google scholar
[18]
Lowenstam H A. Lepidocrocite, an apatite mineral, and magnetite in teeth of chitons(Polyplacophora). Science, 1967, 156(3780): 1373-1375
CrossRef Google scholar
[19]
Mann S, Sparks N H C. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon oncorhynchus nerk: implications for magnetoreception. Journal of Experimental Biology, 1988, 140(1): 35-49
[20]
Kaas P, Richard A, Belle V. Catalogue of living chitons (Mollusca, Polyplacophora) (2nd ed). Leiden: Backhuys Publisher, 1998, 10-12
[21]
Butterfield N J. An early cambrian radula. Journal of Paleontology, 2008, 82(3): 543-554
CrossRef Google scholar
[22]
Kirschvink J L, Lowenstam H A. Mineralization and magnetization of chiton teeth: Paleomagneic, sedimentologic and biologic implications of organic magnetite. Earth and Planetary Science Letters, 1979, 44(2): 193-204
CrossRef Google scholar
[23]
Li C W, Chin T S, Li J S, . Growth of chiton teeth evidenced from magnetic measurement and structure characterization. IEEE Transaction on Magnetics, 1989, 25(5): 3818-3820
CrossRef Google scholar
[24]
Kim K S, Webb J, Macey D J. Compositional changes during biomineralization of radula of the chiton Clavarizona hirtosa. Journal of Inorganic Biochemistry,β1986, 28(2-3): 337-345
CrossRef Google scholar
[25]
Brooker L R,βLee A P,βMacey D J, . In situ studies of biomineral deposition in the radula teeth of chitons of the suborder chitonina. Venus, 2006, 65(1-2): 71-80
[26]
Chiya N, Yoshiyuki T, Kichiro K. Characterization of iron components in the radula of the Japanese chiton Acanthopleura japonica. Venus, 2006, 65(1-2):β153-163
[27]
Shaw J A, Macey D J, Brooker L R, . The chiton stylus canal: An element delivery pathway for tooth cusp biomineralization. Journal of Morphology, 2009, 270(2): 588-600
CrossRef Google scholar
[28]
Shaw J A, Macey D J, Brooker L R. Radula synthesis in three species of iron mineralizing mollusc: Production rate and elemental demand. Journal of the Marine Biological Association of the United Kingdom, 2008, 88(3): 597-601
CrossRef Google scholar
[29]
Farina M, Schemmel A, Weissmuller G, . Atomic force microscopy study of tooth surfaces. Journal of Structural Biology, 1999, 125(11): 39-49
CrossRef Google scholar
[30]
Weas R C, Astle M J, Beger W V. Handbook of Chemistry and Physics (66th ed). Boca Raton: CRC Press, 1986, 180-185
[31]
Evans L A, Macey D J, Webb J. Calcium biominerization in the radula teeth of the chiton Acanthopleura hirtosa. Calcified Tissue International, 1992, 51(11): 78-82
CrossRef Google scholar
[32]
Evans L A, Alvarez R. Characterization of the calcium biomineral in the radular teeth of Chiton Pelliserpentis. Journal of Biological Inorganic Chemistry, 1999, 4(2): 166-170
CrossRef Google scholar
[33]
Lee A P, Brooker L R, Macey D J, . A new biomineral identified in the cores of teeth from the chiton Plaxiphora albida. Journal of Biological Inorganic Chemistry, 2003, 8(3): 256-262
[34]
Webb J, Evans L A, Kim K S, . Controlled deposition and transformation of iron biominerals in chiton radula teeth. In: Suga S, Nakahara H, eds. Mechanisms and Phylogeny of Mineralization in Biological Systems. Tokyo: Springer-Verlag, 1991, 283-290

Acknowledgements

This project was financially supported by the NSFC (Grant No. 30670566) and ISTCP (2008DFA31640). The authors specially thank Professors X. F. Han, B. S. Han and L. Sun for their advice and assistances in the studies.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(312 KB)

Accesses

Citations

Detail

Sections
Recommended

/