Biogenic nanoparticles and mineral composition in the radula of chiton Acanthochitonrubrolineatus

Chuan-lin LIU , Xiao-jie CHENG , Jian-gao ZHAO , Xia QIAN , Cheng-hua GUO , De-jiao YU , Xi-guang CHEN

Front. Mater. Sci. ›› 2009, Vol. 3 ›› Issue (3) : 248 -254.

PDF (312KB)
Front. Mater. Sci. ›› 2009, Vol. 3 ›› Issue (3) : 248 -254. DOI: 10.1007/s11706-009-0046-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Biogenic nanoparticles and mineral composition in the radula of chiton Acanthochitonrubrolineatus

Author information +
History +
PDF (312KB)

Abstract

Magnetite particles were confirmed to deposit in the radula of chiton Acanthochiton rubrolineatus, and these magnetite particles presented as chip-shaped pieces which were 150 nm in width. Many nano-scale crystals constructed each piece of the magnetite particles. The mean size of a single crystal was 52 nm in diameter. Calcium composites were found to coexist with iron minerals. The total amount of magnetite in the chiton radula was 10% (w/w) of the radula weight, and 41% (w/w) of the total minerals. Eight metal elements were measured in the chiton radula, among which iron was a major element (14.6%, w/w) of the radula, followed by sodium, magnesium, calcium, potassium, chromium, manganese and cobalt in turn.

Keywords

biomineralization / nanoparticle / magnetite / radula / chiton

Cite this article

Download citation ▾
Chuan-lin LIU, Xiao-jie CHENG, Jian-gao ZHAO, Xia QIAN, Cheng-hua GUO, De-jiao YU, Xi-guang CHEN. Biogenic nanoparticles and mineral composition in the radula of chiton Acanthochitonrubrolineatus. Front. Mater. Sci., 2009, 3(3): 248-254 DOI:10.1007/s11706-009-0046-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Osterloh F E. Directional superparamagnetism and photoluminescence in clusters of magnetite and cadmium selenide nanoparticles. Comments on Inorganic Chemistry, 2006, 27(1-2): 41-59

[2]

Xiao X, He Q, Huang K. Possible magnetic multifunctional nanoplatforms in medicine. Medical Hypotheses, 2007, 68(3): 680-682

[3]

Moghimi S M, Hunter A C H, Murray J C. Long-circulating and target specific nanoparticles: theory to practice. Pharmacological Reviews, 2001, 53(2): 283-318

[4]

Asif M, Arayne S, Sultana N, . Fabrication of nanoparticles within polymeric pores for controlled release of drug. Pakistan Journal of Pharmaceutical Sciences, 2006, 19(1): 73-84

[5]

Berry C C, Curtis A S G. Function of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 2003, 36(13): 198-206

[6]

Bucak S, Jones D A, Laibinis P E, . Protein separations using colloidal magnetic nanoparticles. Biotechnology Progress, 2003, 19(2): 477-484

[7]

Pankhurst Q A, Connolly J, Jones S K, . Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics, 2003, 36(13): 167-181

[8]

Albrecht M, Janke V, Sievers S, . Scanning force microscopy study of biogenic nanoparticles for medical applications. Journal of Magnetism and Magnetic Materials, 2005, 290-291(1): 269-271

[9]

Cheng F Y, Yang Y S, Ye C S, . Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials, 2005, 26(7): 729-738

[10]

Kawashita M, Tanaka M, Kokubo T, . Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials, 2005, 26(15): 2231-2238

[11]

Xu C J, Sun S H. Monodisperse magnetic nanoparticles for biomedical applications. Polymer International, 2007, 56(7):β821-826

[12]

Sun J, Zhou S, Hou P, . Synthesis and characterization of biocompatible Fe3O4 nanoparticles. Journal of Biomedical Materials Research A, 2007, 80(2): 333-341

[13]

Wu W, He Q G, Jiang C Z. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Research Letters, 2008, 3(11): 397-415

[14]

Blakemore R P. Magnetotactic bacteria. Science, 1975, 190(4213): 377-379

[15]

Mora C V, Davison M, Wild J M, . Magnetoreception and its trigeminal mediation in the homing pigeon. Nature, 2004, 432(7016): 508-511

[16]

Hsu C Y, Li C W. Magnetoreception in honeybees. Science, 1994, 265(5168): 95-97

[17]

Dobson J. Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Letters, 2001, 496(1): 1-5

[18]

Lowenstam H A. Lepidocrocite, an apatite mineral, and magnetite in teeth of chitons(Polyplacophora). Science, 1967, 156(3780): 1373-1375

[19]

Mann S, Sparks N H C. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon oncorhynchus nerk: implications for magnetoreception. Journal of Experimental Biology, 1988, 140(1): 35-49

[20]

Kaas P, Richard A, Belle V. Catalogue of living chitons (Mollusca, Polyplacophora) (2nd ed). Leiden: Backhuys Publisher, 1998, 10-12

[21]

Butterfield N J. An early cambrian radula. Journal of Paleontology, 2008, 82(3): 543-554

[22]

Kirschvink J L, Lowenstam H A. Mineralization and magnetization of chiton teeth: Paleomagneic, sedimentologic and biologic implications of organic magnetite. Earth and Planetary Science Letters, 1979, 44(2): 193-204

[23]

Li C W, Chin T S, Li J S, . Growth of chiton teeth evidenced from magnetic measurement and structure characterization. IEEE Transaction on Magnetics, 1989, 25(5): 3818-3820

[24]

Kim K S, Webb J, Macey D J. Compositional changes during biomineralization of radula of the chiton Clavarizona hirtosa. Journal of Inorganic Biochemistry1986, 28(2-3): 337-345

[25]

Brooker L RLee A PMacey D J, . In situ studies of biomineral deposition in the radula teeth of chitons of the suborder chitonina. Venus, 2006, 65(1-2): 71-80

[26]

Chiya N, Yoshiyuki T, Kichiro K. Characterization of iron components in the radula of the Japanese chiton Acanthopleura japonica. Venus, 2006, 65(1-2):β153-163

[27]

Shaw J A, Macey D J, Brooker L R, . The chiton stylus canal: An element delivery pathway for tooth cusp biomineralization. Journal of Morphology, 2009, 270(2): 588-600

[28]

Shaw J A, Macey D J, Brooker L R. Radula synthesis in three species of iron mineralizing mollusc: Production rate and elemental demand. Journal of the Marine Biological Association of the United Kingdom, 2008, 88(3): 597-601

[29]

Farina M, Schemmel A, Weissmuller G, . Atomic force microscopy study of tooth surfaces. Journal of Structural Biology, 1999, 125(11): 39-49

[30]

Weas R C, Astle M J, Beger W V. Handbook of Chemistry and Physics (66th ed). Boca Raton: CRC Press, 1986, 180-185

[31]

Evans L A, Macey D J, Webb J. Calcium biominerization in the radula teeth of the chiton Acanthopleura hirtosa. Calcified Tissue International, 1992, 51(11): 78-82

[32]

Evans L A, Alvarez R. Characterization of the calcium biomineral in the radular teeth of Chiton Pelliserpentis. Journal of Biological Inorganic Chemistry, 1999, 4(2): 166-170

[33]

Lee A P, Brooker L R, Macey D J, . A new biomineral identified in the cores of teeth from the chiton Plaxiphora albida. Journal of Biological Inorganic Chemistry, 2003, 8(3): 256-262

[34]

Webb J, Evans L A, Kim K S, . Controlled deposition and transformation of iron biominerals in chiton radula teeth. In: Suga S, Nakahara H, eds. Mechanisms and Phylogeny of Mineralization in Biological Systems. Tokyo: Springer-Verlag, 1991, 283-290

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (312KB)

1309

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/