Biogenic nanoparticles and mineral composition in the radula of chiton
Chuan-lin LIU, Xiao-jie CHENG, Jian-gao ZHAO, Xia QIAN, Cheng-hua GUO, De-jiao YU, Xi-guang CHEN
Biogenic nanoparticles and mineral composition in the radula of chiton
Magnetite particles were confirmed to deposit in the radula of chiton Acanthochiton rubrolineatus, and these magnetite particles presented as chip-shaped pieces which were 150 nm in width. Many nano-scale crystals constructed each piece of the magnetite particles. The mean size of a single crystal was 52 nm in diameter. Calcium composites were found to coexist with iron minerals. The total amount of magnetite in the chiton radula was 10% (w/w) of the radula weight, and 41% (w/w) of the total minerals. Eight metal elements were measured in the chiton radula, among which iron was a major element (14.6%, w/w) of the radula, followed by sodium, magnesium, calcium, potassium, chromium, manganese and cobalt in turn.
biomineralization / nanoparticle / magnetite / radula / chiton
[1] |
Osterloh F E. Directional superparamagnetism and photoluminescence in clusters of magnetite and cadmium selenide nanoparticles. Comments on Inorganic Chemistry, 2006, 27(1-2): 41-59
CrossRef
Google scholar
|
[2] |
Xiao X, He Q, Huang K. Possible magnetic multifunctional nanoplatforms in medicine. Medical Hypotheses, 2007, 68(3): 680-682
CrossRef
Google scholar
|
[3] |
Moghimi S M, Hunter A C H, Murray J C. Long-circulating and target specific nanoparticles: theory to practice. Pharmacological Reviews, 2001, 53(2): 283-318
|
[4] |
Asif M, Arayne S, Sultana N,
|
[5] |
Berry C C, Curtis A S G. Function of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 2003, 36(13): 198-206
CrossRef
Google scholar
|
[6] |
Bucak S, Jones D A, Laibinis P E,
CrossRef
Google scholar
|
[7] |
Pankhurst Q A, Connolly J, Jones S K,
CrossRef
Google scholar
|
[8] |
Albrecht M, Janke V, Sievers S,
CrossRef
Google scholar
|
[9] |
Cheng F Y, Yang Y S, Ye C S,
CrossRef
Google scholar
|
[10] |
Kawashita M, Tanaka M, Kokubo T,
CrossRef
Google scholar
|
[11] |
Xu C J, Sun S H. Monodisperse magnetic nanoparticles for biomedical applications. Polymer International, 2007, 56(7):β821-826
CrossRef
Google scholar
|
[12] |
Sun J, Zhou S, Hou P,
CrossRef
Google scholar
|
[13] |
Wu W, He Q G, Jiang C Z. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Research Letters, 2008, 3(11): 397-415
CrossRef
Google scholar
|
[14] |
Blakemore R P. Magnetotactic bacteria. Science, 1975, 190(4213): 377-379
CrossRef
Google scholar
|
[15] |
Mora C V, Davison M, Wild J M,
CrossRef
Google scholar
|
[16] |
Hsu C Y, Li C W. Magnetoreception in honeybees. Science, 1994, 265(5168): 95-97
CrossRef
Google scholar
|
[17] |
Dobson J. Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Letters, 2001, 496(1): 1-5
CrossRef
Google scholar
|
[18] |
Lowenstam H A. Lepidocrocite, an apatite mineral, and magnetite in teeth of chitons(Polyplacophora). Science, 1967, 156(3780): 1373-1375
CrossRef
Google scholar
|
[19] |
Mann S, Sparks N H C. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon oncorhynchus nerk: implications for magnetoreception. Journal of Experimental Biology, 1988, 140(1): 35-49
|
[20] |
Kaas P, Richard A, Belle V. Catalogue of living chitons (Mollusca, Polyplacophora) (2nd ed). Leiden: Backhuys Publisher, 1998, 10-12
|
[21] |
Butterfield N J. An early cambrian radula. Journal of Paleontology, 2008, 82(3): 543-554
CrossRef
Google scholar
|
[22] |
Kirschvink J L, Lowenstam H A. Mineralization and magnetization of chiton teeth: Paleomagneic, sedimentologic and biologic implications of organic magnetite. Earth and Planetary Science Letters, 1979, 44(2): 193-204
CrossRef
Google scholar
|
[23] |
Li C W, Chin T S, Li J S,
CrossRef
Google scholar
|
[24] |
Kim K S, Webb J, Macey D J. Compositional changes during biomineralization of radula of the chiton Clavarizona hirtosa. Journal of Inorganic Biochemistry,β1986, 28(2-3): 337-345
CrossRef
Google scholar
|
[25] |
Brooker L R,βLee A P,βMacey D J,
|
[26] |
Chiya N, Yoshiyuki T, Kichiro K. Characterization of iron components in the radula of the Japanese chiton Acanthopleura japonica. Venus, 2006, 65(1-2):β153-163
|
[27] |
Shaw J A, Macey D J, Brooker L R,
CrossRef
Google scholar
|
[28] |
Shaw J A, Macey D J, Brooker L R. Radula synthesis in three species of iron mineralizing mollusc: Production rate and elemental demand. Journal of the Marine Biological Association of the United Kingdom, 2008, 88(3): 597-601
CrossRef
Google scholar
|
[29] |
Farina M, Schemmel A, Weissmuller G,
CrossRef
Google scholar
|
[30] |
Weas R C, Astle M J, Beger W V. Handbook of Chemistry and Physics (66th ed). Boca Raton: CRC Press, 1986, 180-185
|
[31] |
Evans L A, Macey D J, Webb J. Calcium biominerization in the radula teeth of the chiton Acanthopleura hirtosa. Calcified Tissue International, 1992, 51(11): 78-82
CrossRef
Google scholar
|
[32] |
Evans L A, Alvarez R. Characterization of the calcium biomineral in the radular teeth of Chiton Pelliserpentis. Journal of Biological Inorganic Chemistry, 1999, 4(2): 166-170
CrossRef
Google scholar
|
[33] |
Lee A P, Brooker L R, Macey D J,
|
[34] |
Webb J, Evans L A, Kim K S,
|
/
〈 | 〉 |