
Biogenic nanoparticles and mineral composition in the radula of chiton
Chuan-lin LIU, Xiao-jie CHENG, Jian-gao ZHAO, Xia QIAN, Cheng-hua GUO, De-jiao YU, Xi-guang CHEN
Front. Mater. Sci. ›› 2009, Vol. 3 ›› Issue (3) : 248-254.
Biogenic nanoparticles and mineral composition in the radula of chiton
Magnetite particles were confirmed to deposit in the radula of chiton Acanthochiton rubrolineatus, and these magnetite particles presented as chip-shaped pieces which were 150 nm in width. Many nano-scale crystals constructed each piece of the magnetite particles. The mean size of a single crystal was 52 nm in diameter. Calcium composites were found to coexist with iron minerals. The total amount of magnetite in the chiton radula was 10% (w/w) of the radula weight, and 41% (w/w) of the total minerals. Eight metal elements were measured in the chiton radula, among which iron was a major element (14.6%, w/w) of the radula, followed by sodium, magnesium, calcium, potassium, chromium, manganese and cobalt in turn.
biomineralization / nanoparticle / magnetite / radula / chiton
[1] |
Osterloh F E. Directional superparamagnetism and photoluminescence in clusters of magnetite and cadmium selenide nanoparticles. Comments on Inorganic Chemistry, 2006, 27(1-2): 41-59
CrossRef
Google scholar
|
[2] |
Xiao X, He Q, Huang K. Possible magnetic multifunctional nanoplatforms in medicine. Medical Hypotheses, 2007, 68(3): 680-682
CrossRef
Google scholar
|
[3] |
Moghimi S M, Hunter A C H, Murray J C. Long-circulating and target specific nanoparticles: theory to practice. Pharmacological Reviews, 2001, 53(2): 283-318
|
[4] |
Asif M, Arayne S, Sultana N,
|
[5] |
Berry C C, Curtis A S G. Function of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 2003, 36(13): 198-206
CrossRef
Google scholar
|
[6] |
Bucak S, Jones D A, Laibinis P E,
CrossRef
Google scholar
|
[7] |
Pankhurst Q A, Connolly J, Jones S K,
CrossRef
Google scholar
|
[8] |
Albrecht M, Janke V, Sievers S,
CrossRef
Google scholar
|
[9] |
Cheng F Y, Yang Y S, Ye C S,
CrossRef
Google scholar
|
[10] |
Kawashita M, Tanaka M, Kokubo T,
CrossRef
Google scholar
|
[11] |
Xu C J, Sun S H. Monodisperse magnetic nanoparticles for biomedical applications. Polymer International, 2007, 56(7):β821-826
CrossRef
Google scholar
|
[12] |
Sun J, Zhou S, Hou P,
CrossRef
Google scholar
|
[13] |
Wu W, He Q G, Jiang C Z. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Research Letters, 2008, 3(11): 397-415
CrossRef
Google scholar
|
[14] |
Blakemore R P. Magnetotactic bacteria. Science, 1975, 190(4213): 377-379
CrossRef
Google scholar
|
[15] |
Mora C V, Davison M, Wild J M,
CrossRef
Google scholar
|
[16] |
Hsu C Y, Li C W. Magnetoreception in honeybees. Science, 1994, 265(5168): 95-97
CrossRef
Google scholar
|
[17] |
Dobson J. Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Letters, 2001, 496(1): 1-5
CrossRef
Google scholar
|
[18] |
Lowenstam H A. Lepidocrocite, an apatite mineral, and magnetite in teeth of chitons(Polyplacophora). Science, 1967, 156(3780): 1373-1375
CrossRef
Google scholar
|
[19] |
Mann S, Sparks N H C. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon oncorhynchus nerk: implications for magnetoreception. Journal of Experimental Biology, 1988, 140(1): 35-49
|
[20] |
Kaas P, Richard A, Belle V. Catalogue of living chitons (Mollusca, Polyplacophora) (2nd ed). Leiden: Backhuys Publisher, 1998, 10-12
|
[21] |
Butterfield N J. An early cambrian radula. Journal of Paleontology, 2008, 82(3): 543-554
CrossRef
Google scholar
|
[22] |
Kirschvink J L, Lowenstam H A. Mineralization and magnetization of chiton teeth: Paleomagneic, sedimentologic and biologic implications of organic magnetite. Earth and Planetary Science Letters, 1979, 44(2): 193-204
CrossRef
Google scholar
|
[23] |
Li C W, Chin T S, Li J S,
CrossRef
Google scholar
|
[24] |
Kim K S, Webb J, Macey D J. Compositional changes during biomineralization of radula of the chiton Clavarizona hirtosa. Journal of Inorganic Biochemistry,β1986, 28(2-3): 337-345
CrossRef
Google scholar
|
[25] |
Brooker L R,βLee A P,βMacey D J,
|
[26] |
Chiya N, Yoshiyuki T, Kichiro K. Characterization of iron components in the radula of the Japanese chiton Acanthopleura japonica. Venus, 2006, 65(1-2):β153-163
|
[27] |
Shaw J A, Macey D J, Brooker L R,
CrossRef
Google scholar
|
[28] |
Shaw J A, Macey D J, Brooker L R. Radula synthesis in three species of iron mineralizing mollusc: Production rate and elemental demand. Journal of the Marine Biological Association of the United Kingdom, 2008, 88(3): 597-601
CrossRef
Google scholar
|
[29] |
Farina M, Schemmel A, Weissmuller G,
CrossRef
Google scholar
|
[30] |
Weas R C, Astle M J, Beger W V. Handbook of Chemistry and Physics (66th ed). Boca Raton: CRC Press, 1986, 180-185
|
[31] |
Evans L A, Macey D J, Webb J. Calcium biominerization in the radula teeth of the chiton Acanthopleura hirtosa. Calcified Tissue International, 1992, 51(11): 78-82
CrossRef
Google scholar
|
[32] |
Evans L A, Alvarez R. Characterization of the calcium biomineral in the radular teeth of Chiton Pelliserpentis. Journal of Biological Inorganic Chemistry, 1999, 4(2): 166-170
CrossRef
Google scholar
|
[33] |
Lee A P, Brooker L R, Macey D J,
|
[34] |
Webb J, Evans L A, Kim K S,
|
/
〈 |
|
〉 |