Giant basal spicule from the deep-sea glass sponge
Xiao-hong WANG, Xue-hua ZHANG, Heinz C. SCHRÖDER, Werner E. G. MÜLLER
Giant basal spicule from the deep-sea glass sponge
Like all sponges (phylum Porifera), the glass sponges (Hexactinellida) are provided with an elaborate and distinct body plan, which relies on a filigree skeleton. It is constructed by an array of morphologically determined elements, the spicules. Schulze described the largest siliceous hexactinellid sponge on Earth, the up to 3 m high Monorhaphis chuni, collected during the German Deep Sea Expedition “Valdivia” (1898–1899). This species develops an equally large bio-silica structure, the giant basal spicule (3 m × 10 mm). Using these spicules as a model, one can obtain the basic knowledge on the morphology, formation, and development of silica skeletal elements. The silica matrix is composed of almost pure silica, endowing it with unusual optophysical properties, which are superior to those of man-made waveguides. Experiments suggest that the spicules function in vivo as a nonocular photoreception system. The spicules are also provided with exceptional mechanical properties. Like demosponges, the hexactinellids synthesize their silica enzymatically via the enzyme silicatein (27 kDa protein). This enzyme is located in/embedded in the silica layers. This knowledge will surely contribute to a further utilization and exploration of silica in biomaterial/biomedical science.
sponge / Porifera / Hexactinellida / spicule / giant basal spicule / silicatein / biomaterial science
[1] |
Kruse M, Müller I M, Muller W E G. Early evolution of metazoan serine/threonine and tyrosine kinases: Identification of selected kinases in marine sponges. Molecular Biology and Evolution, 1997, 14(12): 1326–1334
|
[2] |
Kruse M, Leys S P, Müller I M,
|
[3] |
Müller W E G, Wiens M, Adell T,
|
[4] |
Müller W E G, Li J H, Schröder H C,
|
[5] |
Pilcher H. Animal magnetism. Nature, 2005, 435(7045): 1022–1023
|
[6] |
Murray J, Hjort J. The Depths of the Ocean. London: MacMillan, 1912
|
[7] |
Schulze F E.Hexactinellida. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer “Valdivia” 1898–1899. Stuttgart: Gustav Fischer Verlag, 1904
|
[8] |
Roux M, Bouchet P, Bourseau J P,
|
[9] |
Müller W E G, Eckert C, Kropf K,
|
[10] |
Li J. Monorhaphis intermedia-a new species of Hexactinellida. Oceanologia et Limnologia Sinica, 1987, 18: 135–137
|
[11] |
Tabachnick K R. Family Monorhaphididae Ijima, 1927. In: Hooper J N A, van Soest R. Systema Porifera: A Guide to the Classification of Sponges. New York: Kluwer Academic, 2002, 1264–1266
|
[12] |
Wang X H, Li J H, Qiao L,
|
[13] |
Sandford F. Physical and chemical analysis of the siliceous skeletons in six sponges of two groups (Demospongiae and Hexactinellida). Microscopy Research and Technique, 2003, 62(4): 336–355
|
[14] |
Uriz M J, Turon X, Becerro M A,
|
[15] |
Uriz M J. Mineral spiculogenesis in sponges. Canadian Journal of Zoology, 2006, 84: 322–356
|
[16] |
Müller W E G, Jochum K P, Stoll B,
|
[17] |
Müller W E G, Wang X H, Kropf K,
|
[18] |
Levi C, Barton J L, Guillemet C,
|
[19] |
Müller W E G, Boreiko A, Schlossmacher U,
|
[20] |
Müller W E G, Boreiko A, Wang X H,
|
[21] |
Müller W E G, Rothenberger M, Boreiko A,
|
[22] |
Müller W E G, Boreiko A, Schlossmacher U,
|
[23] |
Müller W E G, Schlossacher U, Wang X,
|
[24] |
Wang X H, Schloβmacher U, Jochum K P,
|
[25] |
Sumerel J L, Morse D E. Biotechnological advances in biosilicification. In: Silicon Biomineralization, Vol 33. Berlin: Springer-Verlag Berlin, 225–247
|
[26] |
Shimizu K, Cha J, Stucky G D,
|
[27] |
Cha J N, Shimizu K, Zhou Y,
|
[28] |
Krasko A, Lorenz B, Batel R,
|
[29] |
Müller W E G, Wang X H, Kropf K,
|
[30] |
Müller W E, Krasko A, Le Pennec G,
|
[31] |
Wiens M, Belikov S I, Kaluzhnaya O V,
|
[32] |
Müller W E G, Boreiko A, Schlossmacher U,
|
[33] |
Ramachandran G N, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 1963, 7(1): 95–99
|
[34] |
Robinson P N. A Java program for drawing Ramachandran plots. peter.robinson@charite.de, 2007
|
[35] |
Mayer G. Rigid biological systems as models for synthetic composites. Science, 2005, 310(5751): 1144–1147
|
[36] |
Mayer G, Trejo R, Lara-Curzio E,
|
[37] |
Perovic S, Krasko A, Prokic I,
|
[38] |
Chevreux B, Pfisterer T, Drescher B,
|
[39] |
Pavans de Ceccatty M. Coordination in sponges — foundations of integration. American Zoologist, 1974, 14(3): 895–903
|
[40] |
Mackie G O. Is there a conduction system in sponges? Colloq Int Centre Natl Res Sci, 1979, 291: 145–151
|
[41] |
Leys S P, Degnan B M. Cytological basis of photoresponsive behavior in a sponge larva. Biological Bulletin, 2001, 201(3): 323–338
|
[42] |
Leys S P, Cronin T W, Degnan B M,
|
[43] |
Cattaneo-Vietti R, Bavestrello G, Cerrano C,
|
[44] |
Aizenberg J, Sundar V C, Yablon A D,
|
[45] |
Müller W E G, Wendt K, Geppert C,
|
[46] |
Murr M M, Morse D E. Fractal intermediates in the self-assembly of silicatein filaments. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(33): 11657–11662
|
[47] |
Krasko A, Schröder H C, Batel R,
|
[48] |
Schröder H C, Perovic-Ottstadt S, Wiens M,
|
/
〈 | 〉 |