Interfacial friction damping characteristics in MWNT-filled polycarbonate composites

Yu-hong MAN, Zheng-cao LI, Zheng-jun ZHANG

PDF(192 KB)
PDF(192 KB)
Front. Mater. Sci. ›› 2009, Vol. 3 ›› Issue (3) : 266-272. DOI: 10.1007/s11706-009-0040-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Interfacial friction damping characteristics in MWNT-filled polycarbonate composites

Author information +
History +

Abstract

The effects of strain, temperature, test frequency, and multi-walled nanotube (MWNT) weight percentage on the interfacial sliding at the tube-polymer interfaces were investigated by dynamic mechanical tests. The storage modulus first increased slightly then reached a plateau and finally decreased sharply with further increasing strain (temperature, frequency) amplitude. Moreover, the changing of the storage modulus of the nanocomposite lagged the loss modulus as a function of strain (temperature, frequency). Furthermore, with the increase of MWNT weight percentage interfacial slip was activated at relative smaller strain, lower temperature, or lower frequency. The possible influence of polymer wrapping carbon nanotubes in the interfacial area on interfacial friction was introduced.

Keywords

carbon nanotube / polycarbonate / damping / interfacial friction

Cite this article

Download citation ▾
Yu-hong MAN, Zheng-cao LI, Zheng-jun ZHANG. Interfacial friction damping characteristics in MWNT-filled polycarbonate composites. Front Mater Sci Chin, 2009, 3(3): 266‒272 https://doi.org/10.1007/s11706-009-0040-1

References

[1]
Hölscher H, Schwarz U D, Zwörner O, . Consequences of the stick-slip movement for the scanning force microscopy imaging of graphite. Physical Review B, 1998, 57: 2477-2481
CrossRef Google scholar
[2]
Koratkar N, Suhr J, Joshi A, . Charactering energy dissipation in single-walled carbon nanotubes polycarbonate composites. Applied Physics Letters, 2005, 87(6): 063102 (3 pages)
[3]
Zhou X, Shin E, Wang K W, . Interfacial damping characteristics of carbon nanotube-based composites. Composites Science and Technology, 2004, 64: 2425
CrossRef Google scholar
[4]
Buldum A, Lu J P. Atomic scale sliding and rolling of carbon nanotubes. Physical Review Letters, 1999, 83: 5050-5053
CrossRef Google scholar
[5]
Wagner H D, Lourie O, Feldman Y, . Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Applied Physics Letters, 1998, 72(2): 188-190
CrossRef Google scholar
[6]
Rajoria H, Jalili N. Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites. Composites Science and Technology, 2005, 65(14): 2079-2093
CrossRef Google scholar
[7]
Suhr J, Zhang W, Ajayan P M, . Temperature-activated interfacial friction damping in carbon nanotube polymer composites. Nano Letters, 2006, 6(2): 219-223
CrossRef Google scholar
[8]
Suhr J, Koratkar N, Keblinski P, . Viscoelasiticity in carbon nanotube composites. Nature Materials, 2005, 4: 134-137
CrossRef Google scholar
[9]
Wagner H D, Vaia R A. Nanocomposites: issues at the interface. Materials Today, 2004, 7(11): 38-42
CrossRef Google scholar
[10]
Treacy M M, Ebbesen T W, Gibson J M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381(6854): 678-680
CrossRef Google scholar
[11]
Singh S, Pei Y, Miller R, . Long-range, entangled carbon nanotube networks in polycarbonate. Advanced Functional Materials, 2003, 13: 868-872
CrossRef Google scholar
[12]
Ajayan P M, Schadler L S, Giannaris C, . Single-walled carbon nanotube-polymer composites: strength and weakness. Advanced Materials, 2000, 12(10): 750-754
CrossRef Google scholar
[13]
Qian D, Dickey C, Andrews R, . Load transfer and deformation mechanisms in carbon nanotube-polystyrene composite. Applied Physics Letters, 2000, 76(20): 2868-2870
CrossRef Google scholar
[14]
Sandler J, Shaffer M S P, Prasse T, . Development of a dispersion process for carbon nanotube in an epoxy matrix and the resulting electrical properties. Polymer, 1999, 40(21): 5967-5971
CrossRef Google scholar
[15]
Schadler L S, Giannaris S C, Ajayan P M. Load transfer in carbon nanotube epoxy composites. Applied Physics Letters, 1998, 73(26): 3842-3844
CrossRef Google scholar
[16]
Thostenson E T, Ren Z F, Chou T W. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, 2001, 61(13): 1899-1912
CrossRef Google scholar
[17]
Zhang W, Suhr J, Koratkar N A. Observation of high buckling stability in carbon nanotube polymer composites. Advanced Materials, 2006, 18: 452-456
CrossRef Google scholar
[18]
Eitan A, Fisher F T, Andrews R, . Reinforcement mechanisms in MWNT-filled polycarbonate. Composites Science and Technology, 2006, 66(9): 1162-1173
CrossRef Google scholar

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 10675070 and 50701026), and the National Basic Research Program of China (973 Program, 2007CB936601).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(192 KB)

Accesses

Citations

Detail

Sections
Recommended

/