Usage of polymer brushes as substrates of bone cells
Sabine A. LETSCHE, Annina M. STEINBACH, Manuela PLUNTKE, Othmar MARTI, Anita IGNATIUS, Dirk VOLKMER
Usage of polymer brushes as substrates of bone cells
Implant medical research and tissue engineering both target the design of novel biomaterials for the improvement of human health and clinical applications. In order to develop improved surface coatings for hard tissue (bone) replacement materials and implant devices, we are developing micropatterned coatings consisting of polymer brushes. These are used as organic templates for the mineralization of calcium phosphate in order to improve adhesion of bone cells. First, we give a short account of the current state-of-the-art in this particular field of biomaterial development, while in the second part the preliminary results of cell culture experiments are presented, in which the biocompatibility of polymer brushes are tested on human mesenchymal stem cells.
polymer brush / ATRP / micropatterning / bone cell / cell adhesion
[1] |
Ratner B D. The engineering of biomaterials exhibiting recognition and specificity. Journal of Molecular Recognition, 1996, 9: 617-625
CrossRef
Google scholar
|
[2] |
Ratner B D, Hoffman A S, Schoen F J,
|
[3] |
Campbell A A, Fryxell G E, Linehan J C,
CrossRef
Google scholar
|
[4] |
Costa N, Maquis P M. Biomimetic processing of calcium phosphate coating. Medical Engineering & Physics, 1998, 20: 602-606
CrossRef
Google scholar
|
[5] |
Liu L, Zhang L, Ren B,
CrossRef
Google scholar
|
[6] |
James K, Levene H, Parsons J R,
CrossRef
Google scholar
|
[7] |
Crane G M, Ishaug S L, Mikos A. Bone tissue engineering. Nature Medicine, 1991, 1: 1322-1324
CrossRef
Google scholar
|
[8] |
Hench L L. Bioceramics: From concept to clinic. Journal of the American Ceramic Society, 1991, 74: 1487-1510
CrossRef
Google scholar
|
[9] |
Schoen F J, Hoffman A S. Implant and Device Failure. In: Ratner B D, Hoffman A S, Schoen F J,
|
[10] |
Yim E K F, Leong K W. Significance of synthetic nanostructures in dictating cellular response. Nanomedicine: Nanotechnology, Biology and Medicine, 2005, 1: 10-21
CrossRef
Google scholar
|
[11] |
Goodman S L, Sims P A, Albrecht R M. Three-dimensional extracellular matrix textured biomaterials. Biomaterials, 1996, 17: 2087-2095
CrossRef
Google scholar
|
[12] |
Zinger O, Zhao G, Schwartz Z,
CrossRef
Google scholar
|
[13] |
Buser D, Schenk R K, Steinemann S,
CrossRef
Google scholar
|
[14] |
Wennerberg A, Albrektsson T, Johansson C,
CrossRef
Google scholar
|
[15] |
Li D, Ferguson S J, Beutler T,
CrossRef
Google scholar
|
[16] |
Cochran D L, Schenk R K, Lussi A,
CrossRef
Google scholar
|
[17] |
Faghihi S, Zhilyaev A P, Szpunar J A,
CrossRef
Google scholar
|
[18] |
Yoshimoto H, Shin Y M, Terai H,
CrossRef
Google scholar
|
[19] |
Jin H-J, Chen J, Karageorgiou V,
CrossRef
Google scholar
|
[20] |
Alaerts J A, de Cupere V M, Moser S,
CrossRef
Google scholar
|
[21] |
Britland S, Morgan H, Wojiak-Stodart B,
CrossRef
Google scholar
|
[22] |
Yu F, Muecklich F, Li P,
CrossRef
Google scholar
|
[23] |
Zahor D, Radko A, Vago R,
CrossRef
Google scholar
|
[24] |
Roach P, Eglin D, Rhode K,
CrossRef
Google scholar
|
[25] |
Kasemo B, Gold J. Implant surfaces and interface processes. Advances in Dental Research, 1999, 13: 8-20
CrossRef
Google scholar
|
[26] |
Ratner B D. Background Concepts. In: Ratner B D, Hoffman A S, Schoen F J,
|
[27] |
Keselowsky B G, Collard D M, García A J. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research, 2003, 66A: 247-259
CrossRef
Google scholar
|
[28] |
Healy K E, Thomas C H, Rezania A,
CrossRef
Google scholar
|
[29] |
Brock A, Chang E, Ho C-C,
CrossRef
Google scholar
|
[30] |
Tugulu S, Arnold A, Sielaff I,
CrossRef
Google scholar
|
[31] |
Tugulu S, Silacci P, Stergiopulos N,
CrossRef
Google scholar
|
[32] |
Zapata P, Su J, García A J,
CrossRef
Google scholar
|
[33] |
Charest J L, Eliason M T, García A J,
CrossRef
Google scholar
|
[34] |
Lu H B, Ma C L, Cui H,
CrossRef
Google scholar
|
[35] |
de Groot K, Geesink R, Klein C P A T,
CrossRef
Google scholar
|
[36] |
Thomas K A, Kay J F, Cook S D,
CrossRef
Google scholar
|
[37] |
de Lange G L, Donath K. Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite-coated titanium implants. Biomaterials, 1989, 10: 121-125
CrossRef
Google scholar
|
[38] |
Ducheyne P, Hench L L, Kagan II A,
CrossRef
Google scholar
|
[39] |
Yang Y, Kim K-H, Ong J L. A review on calcium phosphate coatings using a sputtering process — an alternative to plasma spraying. Biomaterials, 2005, 26: 327-337
CrossRef
Google scholar
|
[40] |
Li F, Feng Q L, Cui F Z,
CrossRef
Google scholar
|
[41] |
Ter Brugge P J, Wolke J G C, Jansen J A. Effect of calcium phosphate coating crystallinity and implant surface roughness on differentiation of rat bone marrow cells. Journal of Biomedical Materials Research, 2002, 60: 70-78
CrossRef
Google scholar
|
[42] |
Mao C, Li H, Cui F,
CrossRef
Google scholar
|
[43] |
Zeng H, Lacefield W R. XPS, EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramic coatings: the elects of various process parameters. Biomaterials, 2000, 21: 23-30
CrossRef
Google scholar
|
[44] |
Zhang W, Huang Z-L, Liao S-S,
|
[45] |
Boskey A L, Roy R. Cell culture systems for studies of bone and tooth mineralization. Chemical Reviews, 2008, 108: 4716-4733
CrossRef
Google scholar
|
[46] |
Casse O, Colombani O, Kita-Tokarczyk K,
CrossRef
Google scholar
|
[47] |
Suzuki S, Whittaker M R, Grøndahl L,
CrossRef
Google scholar
|
[48] |
Xu A-W, Ma Y, Coelfen H. Biomimetic mineralization. Journal of Materials Chemistry, 2007, 17: 415-449
CrossRef
Google scholar
|
[49] |
Tsortos A, Nancollas G H. The role of polycarboxylic acids in calcium phosphate mineralization. Journal of Colloid and Interface Science, 2002, 250: 159-167
CrossRef
Google scholar
|
[50] |
Arias J L, Neira-Carrillo A, Arias J I,
CrossRef
Google scholar
|
[51] |
Arias J L, Fernández M S. Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chemical Reviews, 2008, 108: 4475-4482
CrossRef
Google scholar
|
[52] |
He G, Gajjeraman S, Schultz D,
CrossRef
Google scholar
|
[53] |
Hunter G K, Hauschka P V, Poole A R,
|
[54] |
Marsh M E. Polyanion-mediated mineralization-assembly and reoranization of acidic polysaccharides in the Golgi system of a coccolithophorid alga durino mineral deposition. Protoplasma, 1994, 177: 108-122
CrossRef
Google scholar
|
[55] |
Marsh M E. Polyanion-mediated mineralization — a kinetic analysis of the calcium-carrier hypothesis in the phytoflagellate Pleurochrysis carterae. Protoplasma, 1996, 190: 181-188
CrossRef
Google scholar
|
[56] |
Aizenberg J, Black A J, Whitesides G M. Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver. Journal of the American Chemical Society, 1999, 121: 4500-4509
CrossRef
Google scholar
|
[57] |
Aizenberg J, Black A J, Whitesides G M. Control of crystal nucleation by patterned self-assembled monolayers. Nature, 1999, 398: 495-498
CrossRef
Google scholar
|
[58] |
Politi Y, Arad T, Klein E,
CrossRef
Google scholar
|
[59] |
Aizenberg J, Muller D A, Grazul J L,
CrossRef
Google scholar
|
[60] |
Volkmer D, Harms M, Gower L,
CrossRef
Google scholar
|
[61] |
Amos F F, Sharbaugh D M, Talham D R,
CrossRef
Google scholar
|
[62] |
Tugulu S, Harms M, Fricke M,
CrossRef
Google scholar
|
[63] |
de Las Heras Alarcón C, Farhan T, Osborne V L,
CrossRef
Google scholar
|
[64] |
Senaratne W, Andurzzi L, Ober C K. Self-assembled monolayers and polymer brushes in biotechnology: Current applications and future perspectives. Biomacromolecules, 2005, 6: 2427-2448
CrossRef
Google scholar
|
[65] |
Konradi R, Ruehe J. Interaction of poly(methacrylic acid) brushes with metal ions: swelling properties. Macromolecules, 2005, 38: 4345-4354
CrossRef
Google scholar
|
[66] |
Ruehe J, Ballauff M, Biesalski M,
|
[67] |
Edmondson S, Osborne V L, Huck W T S. Polymer brushes via surface-initiated polymerizations. Chemical Society Reviews, 2004, 33: 14-22
CrossRef
Google scholar
|
[68] |
Prucker O, Konradi R, Schimmel M,
|
[69] |
Zhou F, Huck W T S. Surface grafted polymer brushes as ideal building blocks for “smart” surfaces. Physical Chemistry Chemical Physics, 2006, 8: 3815-3823
CrossRef
Google scholar
|
[70] |
Barentin C, Muller P, Joanny J F. Polymer brushes formed by end-capped poly(ethylene oxide) (PEO) at the air-water interface. Macromolecules, 1998, 31: 2198-2211
CrossRef
Google scholar
|
[71] |
Bug A L R, Cates M E, Safran S A,
CrossRef
Google scholar
|
[72] |
Pyun J, Kowalewski T, Matyjaszewski K. Synthesis of polymer brushes using atom transfer radical polymerization. Macromolecular Rapid Communications, 2003, 24: 1043-1059
CrossRef
Google scholar
|
[73] |
Rowe-Konopacki M D, Boyes S G. Synthesis of surface initiated diblock copolymer brushes from flat silicon substrates utilizing the RAFT polymerization technique. Macromolecules, 2007, 40: 879-888
CrossRef
Google scholar
|
[74] |
Luzinov I, Minko S, Senkovsky V,
CrossRef
Google scholar
|
[75] |
Matyjaszewski K, Miller P J, Shukla N,
CrossRef
Google scholar
|
[76] |
Jordan R, Ulman A. Surface initiated living cationic polymerization of 2-oxazolines. Journal of the American Chemical Society, 1998, 120: 243-247
CrossRef
Google scholar
|
[77] |
Limpoco F T, Advincula R C, Perry S S. Solvent dependent friction force response of polystyrene brushes prepared by surface initiated polymerization. Langmuir, 2007, 23: 12196-12201
CrossRef
Google scholar
|
[78] |
Tugulu S, Barbey R, Harms M,
CrossRef
Google scholar
|
[79] |
Zhou F, Liu S J, Wang B,
|
[80] |
Treat N D, Ayres N, Boyes S G,
CrossRef
Google scholar
|
[81] |
Zhao B, Brittain W J. Synthesis of polystyrene brushes on silicate substrates via carbocationic polymerization from self-assembled monolayers. Macromolecules, 2000, 33: 342-348
CrossRef
Google scholar
|
[82] |
Advincula R, Zhou Q, Park M,
CrossRef
Google scholar
|
[83] |
Buchmeiser M R, Sinner F, Mupa M,
CrossRef
Google scholar
|
[84] |
Kong B, Lee J K, Choi I S. Surface-initiated, ring-opening metathesis polymerization: Formation of diblock copolymer brushes and solvent-dependent morphological changes. Langmuir, 2007, 23: 6761-6765
CrossRef
Google scholar
|
[85] |
Wang J-S, Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society, 1995, 117: 5614-5615
CrossRef
Google scholar
|
[86] |
Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chemical Reviews, 2001, 101: 2921-2990
CrossRef
Google scholar
|
[87] |
Davis K A, Matyjaszewski K. Atom transfer radical polymerization of tert-butyl acrylate and preparation of block copolymers. Macromolecules, 2000, 33: 4039-4047
CrossRef
Google scholar
|
[88] |
Shah R R, Merreceyes D, Husemann M,
CrossRef
Google scholar
|
[89] |
Prucker O, Schimmel M, Tovar G,
CrossRef
Google scholar
|
[90] |
Schmelmer U, Jordan R, Geyer W,
CrossRef
Google scholar
|
[91] |
Schmelmer U, Paul A, Kueller A,
CrossRef
Google scholar
|
[92] |
Schaeffler A, Buechler C. Concise review: Adipose tissue-derived stromal cells — basic and clinical implications for novel cell-based therapies. Stem Cells, 2007, 25: 818-827
CrossRef
Google scholar
|
[93] |
Caplan A I. Mesenchymal stem cells. In: Lanza R P. Handbook of Stem Cells. Amsterdam: Academic Press, 2004, 299-308
CrossRef
Google scholar
|
[94] |
Pittenger M F, Mbalaviele G, Black M,
|
[95] |
Pittenger M F, Mackay A M, Beck S C,
CrossRef
Google scholar
|
[96] |
Wakitani S, Saito T, Caplan A I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle and Nerve, 1995, 18: 1417-1426
CrossRef
Google scholar
|
[97] |
Masci G, Bontempo D, Tiso N,
CrossRef
Google scholar
|
[98] |
Azzaroni O, Brown A A, Huck W T S. UCST wetting transitions of polyzwitterionic brushes driven by self-association. Angewandte Chemie International Edition, 2006, 45: 1770-1774
CrossRef
Google scholar
|
[99] |
Dalsin J L, Messersmith P B. Bioinspired antifouling polymers. Materials Today, 2005, 8: 38-46
CrossRef
Google scholar
|
[100] |
Singh N, Cui X, Boland T,
CrossRef
Google scholar
|
[101] |
Tugulu S, Klok H-A. Stability and non-fouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions. Biomacromolecules, 2008, 9: 906-912
CrossRef
Google scholar
|
[102] |
Chen C S, Mrksich M, Huang S,
CrossRef
Google scholar
|
[103] |
Singhvi R, Kumar A, Lopez G P,
CrossRef
Google scholar
|
[104] |
Cheng G, Zhang Z, Chen S,
CrossRef
Google scholar
|
[105] |
Zhang Z, Chen S, Chang Y,
CrossRef
Google scholar
|
[106] |
Feng W, Nieh M-P, Zhu S,
CrossRef
Google scholar
|
[107] |
Chang Y, Chen S, Zhang Z,
CrossRef
Google scholar
|
[108] |
Iwata R, Suk-In P, Hoven V P,
CrossRef
Google scholar
|
[109] |
Zhang Z, Chao T, Chen S,
CrossRef
Google scholar
|
[110] |
Zhao G, Schwartz Z, Wieland M,
CrossRef
Google scholar
|
[111] |
Mendelsohn J D, Yang S Y, Hiller J A,
CrossRef
Google scholar
|
/
〈 | 〉 |