Advances in self-assembled ultrathin polyoxomolybdates multilayers

Liang-bao YANG, Xiu-fang WANG, An-jian XIE, Gang HU, Yu-hua SHEN

PDF(368 KB)
PDF(368 KB)
Front. Mater. Sci. ›› 2009, Vol. 3 ›› Issue (1) : 1-8. DOI: 10.1007/s11706-009-0019-y
REVIEW ARTICLE
REVIEW ARTICLE

Advances in self-assembled ultrathin polyoxomolybdates multilayers

Author information +
History +

Abstract

The research on the assembly and function of organized molecular films has gained more and more interest. Electrostatic interactions can be employed to assemble polyoxomolybdates in surface confined multilayers. Ultrathin multilayer films of polyoxomolybdates and organic molecules by the self-assembly method have been reviewed. At the same time, self-assemblies in aqueous solution are also reported, such as wheel-shaped clusters (Mo154), hollow spherical “blackberry”-like vesicles (Mo72Fe30) and Keggin structures. Polyoxomolybdate multilayers are promising candidates for diverse applications including electrocatalytic, photo- and electro-chromic systems. The development in this particular field of materials science may be highlighted in the future.

Keywords

polyoxomolybdates / multilayer films / self-assembled

Cite this article

Download citation ▾
Liang-bao YANG, Xiu-fang WANG, An-jian XIE, Gang HU, Yu-hua SHEN. Advances in self-assembled ultrathin polyoxomolybdates multilayers. Front Mater Sci Chin, 2009, 3(1): 1‒8 https://doi.org/10.1007/s11706-009-0019-y

References

[1]
Shen J C, Zhang X, Sun Y P. Molecular deposition films. Progress in Nature Science, 1996, 6: 13-21
[2]
Krass H, Papastavrou G, Kurth D G. Layer-by-Layer self-assembly of a polyelectrolyte bearing metal ion coordination and electrostatic functionality. Chemistry of Materials, 2003, 15(1): 196-203
CrossRef Google scholar
[3]
Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science, 1997, 277(29): 1232-1237
CrossRef Google scholar
[4]
Schmitt J, Decher G, Dressick W J, . Metal nanoparticle/polymer superlattice films: fabrication and control of layer structure. Advanced Materials, 1997, 9(1): 61-65
CrossRef Google scholar
[5]
Zhang X, Shen J C. Self-assembled ultrathin films: from layered nanoarchitectures to functional assemblies. Advanced Materials, 1999, 11(13): 1139-1143
CrossRef Google scholar
[6]
Dutta A K, Ho T, Zhang L, . Nucleation and growth of lead sulfide nano-and microcrystallites in supramolecular polymer assemblies. Chemistry of Materials, 2000, 12(4): 1042-1048
CrossRef Google scholar
[7]
Kozhenikov I V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chemical Reviews, 1998, 98(1): 171-198
CrossRef Google scholar
[8]
Mizuno N, Misono M. Heterogeneous catalysis. Chemical Reviews, 1998, 98(1): 199-218
CrossRef Google scholar
[9]
Weinstook I A. Homogeneous-phase electron-transfer reactions of polyoxometalates. Chemical Reviews, 1998, 98(1): 113-170
CrossRef Google scholar
[10]
Sadakane M, Stechhan E. Electrochemical properties of polyoxometalates as electrocatalysts. Chemical Reviews, 1998, 98(1): 219-238
CrossRef Google scholar
[11]
Yamase T. Photo- and electrochromism of polyoxometalates and related materials. Chemical Reviews, 1998, 98(1): 307-326
CrossRef Google scholar
[12]
Rhule J T, Hill C L, Judd D A. Polyoxometalates in medicine. Chemical Reviews, 1998, 98(1): 327-358
CrossRef Google scholar
[13]
Katsoulis D E. A survey of applications of polyoxometalates. Chemical Reviews, 1998, 98(1): 359-388
CrossRef Google scholar
[14]
Yang L B, Shen Y H, Xie A J, . Oriented attachment growth of three-dimensionally packed trigonal selenium microspheres into large-area wire networks. European Journal of Inorganic Chemistry, 2007, 28: 4438-4444
CrossRef Google scholar
[15]
Yang L B, Shen Y H, Xie A J, . Synthesis of controllable-size core-shell Se-Ag and Se-Au nanoparticles in UV-irradiated TSA solution. European Journal of Inorganic Chemistry, 2007, 8: 1128-1134
CrossRef Google scholar
[16]
Yang L B, Shen Y H, Xie A J, . Facile size-controlled synthesis of silver nanoparticles in UV-irradiated tungstosilicate acid solution. Journal of Physical Chemistry B, 2007, 111(14): 5300-5308
[17]
Liu S, Kurth D G, Bredenkotter B, . The structure of self-assembled multilayers with polyoxometalate nanoclusters. Journal of the American Chemical Society, 2002, 124(41): 12279-12287
CrossRef Google scholar
[18]
Liu S, Kurth D G, Volkmer D. Polyoxometalates as pH-sensitive probes in self-assembled multilayers. Chemical Communications, 2002, 9: 976-977
CrossRef Google scholar
[19]
Ichinose I, Tagawa H, Mizuki S, . Formation process of ultrathin multilayer films of molybdenum oxide by alternate adsorption of octamolybdate and linear polycations. Langmuir, 1998, 14(1): 187-192
CrossRef Google scholar
[20]
Caruso F, Kurth D G, Volkmer D, . Ultrathin molybdenum polyoxometalate-polyelectrolyte multilayer films. Langmuir, 1998, 14(13): 3462-3465
CrossRef Google scholar
[21]
Katsuhiko A, Yuri L, Lzumi I. Ultrathin films of inorganic materials (SiO2nanoparticle, montmorillonite microplate, and molybdenum oxide) prepared by alternate layer-by-layer assembly with organic polyions. Applied Clay Science, 1999, 15(1–2): 137-152
[22]
Moriguchi I, Fendler J H. Characterization and electrochromic properties of ultrathin films self-assembled from poly(diallyldimethylammonium) chloride and sodium decatungstate. Chemistry of Materials, 1998, 10(8): 2205-2211
CrossRef Google scholar
[23]
Chen Z, Yang Y, Qiu J, . Fabrication of photochromic WO3/4,4'-BAMBp superlattice films. Langmuir, 2000, 16(2): 722-725
CrossRef Google scholar
[24]
Chen Z H, Ma Y, Yao J N. Self-assembled inorganic/organic composite superlattice thin films with photochromic properties. Thin Solid Films, 2001, 384(2): 160-165
CrossRef Google scholar
[25]
Chen Z H, Ma Y, He T, . Modification of photochromic inorganic/organic superlattice films by organic molecules. New Journal of Chemistry, 2002, 26: 621-624
CrossRef Google scholar
[26]
Zhang G, Chen Z, He T. Construction of self-assembled ultrathin polyoxometalate/1,10-decanediamine photochromic films. Journal of Physical Chemistry B, 2004, 108(22): 6944-6948
CrossRef Google scholar
[27]
Zhang L, Shen Y H, Xie A J, . One-step synthesis of silver nanoparticles in self-assembled multilayered films based on a Keggin structure compound. Journal of Materials Chemistry, 2008, 18(11): 1196-1203
CrossRef Google scholar
[28]
Cheng L, Cox J A. Nanocomposite multilayer film of a ruthenium metallodendrimer and a dawson-type polyoxometalate as a bifunctional electrocatalyst. Chemistry of Materials, 2002, 14(1): 6-8
CrossRef Google scholar
[29]
Wang L, Jiang M, Wang E B. Synthesis and characterization of the nanoporous ultrathin multilayer films based on molybdenum polyoxometalate (Mo36)n. Materials Letters, 2004, 58: 683-687
CrossRef Google scholar
[30]
Wang L, Jiang M, Wang E B. Synthesis and characterization of ultrathin multilayer films based on molybdenum polyoxometalate (Mo54)n. Journal of Colloid and Interface Science, 2004, 274(2): 602-606
CrossRef Google scholar
[31]
Wang L, Jiang M, Wang E B. Preparation and characterization of the nanoporous ultrathin multilayer films based on molybdenum polyoxometalate (Mo38)n. Journal of Solid State Chemistry, 2003, 176(1): 13-17
CrossRef Google scholar
[32]
Müller A, Das S K, Fedin V P, . Rapid and simple isolation of the crystalline molybdenum-blue compounds with discrete and linked nanosized ring-shaped anions: Na15[MoVI126MoV28O462H14(H2O)70]0.5[MoVI124MoV28O457H14(H2O)6868]0.5·ca. 400βH2O and Na22[MoVI118MoV28O442H14(H2O)58]β·βca. 250βH2O, 1999, 625(7): 1187-1192
[33]
Cronin L, Diemann E, Müller A. In: Woollins J D, ed. Inorganic Experiments. 2nd ed. Weinheim: Wiley-VCH, 2003, 340-346
[34]
Müller A, Serain C. Soluble molybdenum blues-“des pudels kern”. Accounts of Chemical Research, 2000, 33: 2-10
CrossRef Google scholar
[35]
Müller A, Diemann E, Kuhlmann C, . Hierarchic patterning: architectures beyond ‘giant molecular wheels’. Chemical Communications, 2001, 19: 1928-1929
CrossRef Google scholar
[36]
Liu T. An unusually slow self-assembly of inorganic ions in dilute aqueous solution. Journal of the American Chemical Society, 2003, 125(2): 312-313
CrossRef Google scholar
[37]
Liu T B, Diemann E, Li H L, . Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles. Nature, 2003, 426(6962): 59-62
CrossRef Google scholar
[38]
Müller A, Krickemeyer E, Bögge H, . Giant ring-shaped building blocks linked to form a layered cluster network with nanosized channels: [MoVI124MoV28O4293-O)28H14(H2O)66.5]16-. Chemistry - A European Journal, 1999, 5(5): 1496-1502
CrossRef Google scholar
[39]
Müller A, Koop M, Bogge H, . Exchanged ligands on the surface of a giant cluster: [(MoO3)176(H2O)63(CH3OH)17Hn](32-n)-. Chemical Communications, 1998, 15: 1501-1502
CrossRef Google scholar
[40]
Müller A, Das S K, Talismanova M, . Paramagnetic keplerate necklaces synthesized by a novel room-temperature solid-state reaction: controlled linking of metal-oxide-based nanoparticles. Angewandte Chemie International Edition, 2002, 41: 579-582
CrossRef Google scholar
[41]
Liu T. Supramolecular structures of polyoxomolybdate-based giant molecules in aqueous solution. Journal of the American Chemical Society, 2002, 124(37): 10942-10943
CrossRef Google scholar
[42]
Müller A, Krickemeyer E, Das S K, . Linking icosahedral, strong molecular magnets {MoFe} to layers-a solid-state reaction at room temperature. Angewandte Chemie International Edition, 2000, 39: 1612-1614
CrossRef Google scholar
[43]
Liu T, Wan Q, Xie Y, . Polymer-assisted formation of giant polyoxomolybdate structures. Journal of the American Chemical Society, 2001, 123(44): 10966-10972
CrossRef Google scholar
[44]
Volkmer D, Du Chesne A, Kurth D G, . Toward nanodevices: synthesis and characterization of the nanoporous surfactant-encapsulated keplerate (DODA)40(NH4)2[(H2O)nMo132O372(CH3COO)30(H2O)72]. Journal of the American Chemical Society, 2000, 122(9): 1995-1998
CrossRef Google scholar
[45]
Kurth D G, Lehmann P, Volkmer D, . Surfactant-encapsulated clusters (SECs): (DODA)20(NH4)[H3Mo57V6(NO)6O183(H3O)18], a case study. Chemistry - A European Journal, 2000, 6(2): 385-393
CrossRef Google scholar
[46]
Volkmer D, Bredenkötter B, Tellenbröker J, . Structure and properties of the dendron-encapsulated polyoxometalate (C52H60NO12)12[(Mn(H2O))3(SbW9O33)2], a first generation dendrizyme. Journal of the American Chemical Society, 2002, 124(35): 10489-10496
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 20871001, 20671001, and 20731001), the Major Program of Anhui Provincial Education Department (Grant ZD2007004-1), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070357002), and Anhui Key Laboratory of Functional Material of Inorganic Chemistry.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(368 KB)

Accesses

Citations

Detail

Sections
Recommended

/