Advances in self-assembled ultrathin polyoxomolybdates multilayers

Liang-bao YANG , Xiu-fang WANG , An-jian XIE , Gang HU , Yu-hua SHEN

Front. Mater. Sci. ›› 2009, Vol. 3 ›› Issue (1) : 1 -8.

PDF (368KB)
Front. Mater. Sci. ›› 2009, Vol. 3 ›› Issue (1) : 1 -8. DOI: 10.1007/s11706-009-0019-y
REVIEW ARTICLE
REVIEW ARTICLE

Advances in self-assembled ultrathin polyoxomolybdates multilayers

Author information +
History +
PDF (368KB)

Abstract

The research on the assembly and function of organized molecular films has gained more and more interest. Electrostatic interactions can be employed to assemble polyoxomolybdates in surface confined multilayers. Ultrathin multilayer films of polyoxomolybdates and organic molecules by the self-assembly method have been reviewed. At the same time, self-assemblies in aqueous solution are also reported, such as wheel-shaped clusters (Mo154), hollow spherical “blackberry”-like vesicles (Mo72Fe30) and Keggin structures. Polyoxomolybdate multilayers are promising candidates for diverse applications including electrocatalytic, photo- and electro-chromic systems. The development in this particular field of materials science may be highlighted in the future.

Keywords

polyoxomolybdates / multilayer films / self-assembled

Cite this article

Download citation ▾
Liang-bao YANG, Xiu-fang WANG, An-jian XIE, Gang HU, Yu-hua SHEN. Advances in self-assembled ultrathin polyoxomolybdates multilayers. Front. Mater. Sci., 2009, 3(1): 1-8 DOI:10.1007/s11706-009-0019-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shen J C, Zhang X, Sun Y P. Molecular deposition films. Progress in Nature Science, 1996, 6: 13-21

[2]

Krass H, Papastavrou G, Kurth D G. Layer-by-Layer self-assembly of a polyelectrolyte bearing metal ion coordination and electrostatic functionality. Chemistry of Materials, 2003, 15(1): 196-203

[3]

Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science, 1997, 277(29): 1232-1237

[4]

Schmitt J, Decher G, Dressick W J, . Metal nanoparticle/polymer superlattice films: fabrication and control of layer structure. Advanced Materials, 1997, 9(1): 61-65

[5]

Zhang X, Shen J C. Self-assembled ultrathin films: from layered nanoarchitectures to functional assemblies. Advanced Materials, 1999, 11(13): 1139-1143

[6]

Dutta A K, Ho T, Zhang L, . Nucleation and growth of lead sulfide nano-and microcrystallites in supramolecular polymer assemblies. Chemistry of Materials, 2000, 12(4): 1042-1048

[7]

Kozhenikov I V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chemical Reviews, 1998, 98(1): 171-198

[8]

Mizuno N, Misono M. Heterogeneous catalysis. Chemical Reviews, 1998, 98(1): 199-218

[9]

Weinstook I A. Homogeneous-phase electron-transfer reactions of polyoxometalates. Chemical Reviews, 1998, 98(1): 113-170

[10]

Sadakane M, Stechhan E. Electrochemical properties of polyoxometalates as electrocatalysts. Chemical Reviews, 1998, 98(1): 219-238

[11]

Yamase T. Photo- and electrochromism of polyoxometalates and related materials. Chemical Reviews, 1998, 98(1): 307-326

[12]

Rhule J T, Hill C L, Judd D A. Polyoxometalates in medicine. Chemical Reviews, 1998, 98(1): 327-358

[13]

Katsoulis D E. A survey of applications of polyoxometalates. Chemical Reviews, 1998, 98(1): 359-388

[14]

Yang L B, Shen Y H, Xie A J, . Oriented attachment growth of three-dimensionally packed trigonal selenium microspheres into large-area wire networks. European Journal of Inorganic Chemistry, 2007, 28: 4438-4444

[15]

Yang L B, Shen Y H, Xie A J, . Synthesis of controllable-size core-shell Se-Ag and Se-Au nanoparticles in UV-irradiated TSA solution. European Journal of Inorganic Chemistry, 2007, 8: 1128-1134

[16]

Yang L B, Shen Y H, Xie A J, . Facile size-controlled synthesis of silver nanoparticles in UV-irradiated tungstosilicate acid solution. Journal of Physical Chemistry B, 2007, 111(14): 5300-5308

[17]

Liu S, Kurth D G, Bredenkotter B, . The structure of self-assembled multilayers with polyoxometalate nanoclusters. Journal of the American Chemical Society, 2002, 124(41): 12279-12287

[18]

Liu S, Kurth D G, Volkmer D. Polyoxometalates as pH-sensitive probes in self-assembled multilayers. Chemical Communications, 2002, 9: 976-977

[19]

Ichinose I, Tagawa H, Mizuki S, . Formation process of ultrathin multilayer films of molybdenum oxide by alternate adsorption of octamolybdate and linear polycations. Langmuir, 1998, 14(1): 187-192

[20]

Caruso F, Kurth D G, Volkmer D, . Ultrathin molybdenum polyoxometalate-polyelectrolyte multilayer films. Langmuir, 1998, 14(13): 3462-3465

[21]

Katsuhiko A, Yuri L, Lzumi I. Ultrathin films of inorganic materials (SiO2nanoparticle, montmorillonite microplate, and molybdenum oxide) prepared by alternate layer-by-layer assembly with organic polyions. Applied Clay Science, 1999, 15(1–2): 137-152

[22]

Moriguchi I, Fendler J H. Characterization and electrochromic properties of ultrathin films self-assembled from poly(diallyldimethylammonium) chloride and sodium decatungstate. Chemistry of Materials, 1998, 10(8): 2205-2211

[23]

Chen Z, Yang Y, Qiu J, . Fabrication of photochromic WO3/4,4'-BAMBp superlattice films. Langmuir, 2000, 16(2): 722-725

[24]

Chen Z H, Ma Y, Yao J N. Self-assembled inorganic/organic composite superlattice thin films with photochromic properties. Thin Solid Films, 2001, 384(2): 160-165

[25]

Chen Z H, Ma Y, He T, . Modification of photochromic inorganic/organic superlattice films by organic molecules. New Journal of Chemistry, 2002, 26: 621-624

[26]

Zhang G, Chen Z, He T. Construction of self-assembled ultrathin polyoxometalate/1,10-decanediamine photochromic films. Journal of Physical Chemistry B, 2004, 108(22): 6944-6948

[27]

Zhang L, Shen Y H, Xie A J, . One-step synthesis of silver nanoparticles in self-assembled multilayered films based on a Keggin structure compound. Journal of Materials Chemistry, 2008, 18(11): 1196-1203

[28]

Cheng L, Cox J A. Nanocomposite multilayer film of a ruthenium metallodendrimer and a dawson-type polyoxometalate as a bifunctional electrocatalyst. Chemistry of Materials, 2002, 14(1): 6-8

[29]

Wang L, Jiang M, Wang E B. Synthesis and characterization of the nanoporous ultrathin multilayer films based on molybdenum polyoxometalate (Mo36)n. Materials Letters, 2004, 58: 683-687

[30]

Wang L, Jiang M, Wang E B. Synthesis and characterization of ultrathin multilayer films based on molybdenum polyoxometalate (Mo54)n. Journal of Colloid and Interface Science, 2004, 274(2): 602-606

[31]

Wang L, Jiang M, Wang E B. Preparation and characterization of the nanoporous ultrathin multilayer films based on molybdenum polyoxometalate (Mo38)n. Journal of Solid State Chemistry, 2003, 176(1): 13-17

[32]

Müller A, Das S K, Fedin V P, . Rapid and simple isolation of the crystalline molybdenum-blue compounds with discrete and linked nanosized ring-shaped anions: Na15[MoVI126MoV28O462H14(H2O)70]0.5[MoVI124MoV28O457H14(H2O)6868]0.5·ca. 400βH2O and Na22[MoVI118MoV28O442H14(H2O)58]β·βca. 250βH2O, 1999, 625(7): 1187-1192

[33]

Cronin L, Diemann E, Müller A. In: Woollins J D, ed. Inorganic Experiments. 2nd ed. Weinheim: Wiley-VCH, 2003, 340-346

[34]

Müller A, Serain C. Soluble molybdenum blues-“des pudels kern”. Accounts of Chemical Research, 2000, 33: 2-10

[35]

Müller A, Diemann E, Kuhlmann C, . Hierarchic patterning: architectures beyond ‘giant molecular wheels’. Chemical Communications, 2001, 19: 1928-1929

[36]

Liu T. An unusually slow self-assembly of inorganic ions in dilute aqueous solution. Journal of the American Chemical Society, 2003, 125(2): 312-313

[37]

Liu T B, Diemann E, Li H L, . Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles. Nature, 2003, 426(6962): 59-62

[38]

Müller A, Krickemeyer E, Bögge H, . Giant ring-shaped building blocks linked to form a layered cluster network with nanosized channels: [MoVI124MoV28O4293-O)28H14(H2O)66.5]16-. Chemistry - A European Journal, 1999, 5(5): 1496-1502

[39]

Müller A, Koop M, Bogge H, . Exchanged ligands on the surface of a giant cluster: [(MoO3)176(H2O)63(CH3OH)17Hn](32-n)-. Chemical Communications, 1998, 15: 1501-1502

[40]

Müller A, Das S K, Talismanova M, . Paramagnetic keplerate necklaces synthesized by a novel room-temperature solid-state reaction: controlled linking of metal-oxide-based nanoparticles. Angewandte Chemie International Edition, 2002, 41: 579-582

[41]

Liu T. Supramolecular structures of polyoxomolybdate-based giant molecules in aqueous solution. Journal of the American Chemical Society, 2002, 124(37): 10942-10943

[42]

Müller A, Krickemeyer E, Das S K, . Linking icosahedral, strong molecular magnets {MoFe} to layers-a solid-state reaction at room temperature. Angewandte Chemie International Edition, 2000, 39: 1612-1614

[43]

Liu T, Wan Q, Xie Y, . Polymer-assisted formation of giant polyoxomolybdate structures. Journal of the American Chemical Society, 2001, 123(44): 10966-10972

[44]

Volkmer D, Du Chesne A, Kurth D G, . Toward nanodevices: synthesis and characterization of the nanoporous surfactant-encapsulated keplerate (DODA)40(NH4)2[(H2O)nMo132O372(CH3COO)30(H2O)72]. Journal of the American Chemical Society, 2000, 122(9): 1995-1998

[45]

Kurth D G, Lehmann P, Volkmer D, . Surfactant-encapsulated clusters (SECs): (DODA)20(NH4)[H3Mo57V6(NO)6O183(H3O)18], a case study. Chemistry - A European Journal, 2000, 6(2): 385-393

[46]

Volkmer D, Bredenkötter B, Tellenbröker J, . Structure and properties of the dendron-encapsulated polyoxometalate (C52H60NO12)12[(Mn(H2O))3(SbW9O33)2], a first generation dendrizyme. Journal of the American Chemical Society, 2002, 124(35): 10489-10496

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (368KB)

1220

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/