Effect of Y codoping on luminescence decays of the I level in Er-doped AlO powders prepared by a sol-gel method

WANG Hui, LEI Ming-kai

PDF(175 KB)
PDF(175 KB)
Front. Mater. Sci. ›› 2008, Vol. 2 ›› Issue (3) : 286-290. DOI: 10.1007/s11706-008-0051-3

Effect of Y codoping on luminescence decays of the I level in Er-doped AlO powders prepared by a sol-gel method

  • WANG Hui, LEI Ming-kai
Author information +
History +

Abstract

The luminescence lifetime of the 0.01 mol.%–0.1 mol.% Er3+- and 0–20 mol.% Y3+-codoped Al2O3 powders prepared at a sintering temperature of 900°C in a non-aqueous sol-gel method has been investigated to explore the enhanced mechanism of photoluminescence properties of the Er3+-doped Al2O3 by Y3+ codoping. For the 0.1 mol.% Er3+–Y3+-codoped Al2O3 powders, the measured lifetime of Er3+ gradually increases with increasing Y3+ concentration. Consequently, codoping with 20 mol.% Y3+ leads to an increase in the measured lifetime from 3.5 to 5.8 ms. By comparing the measured lifetime for different Er3+ concentrations in the Al2O3 powders, the radiative lifetime of both the Er3+-doped and the Er3+–Y3+-codoped Al2O3 powders is estimated to be about 7.5 ms. Infrared absorption spectra indicate that Y3+ codoping does not change the –OH content in the Er3+–Y3+-codoped Al2O3 powders. The prolonged luminescence lifetime of the 4I13/2 level of Er3+ in Er3+-doped Al2O3 powders by Y3+ codoping is ascribed to the decrease in the energy transfer rate between the Er3+ ions and the Er3+ and –OH, respectively, due to the suppressed interaction between Er3+ ions.

Cite this article

Download citation ▾
WANG Hui, LEI Ming-kai. Effect of Y codoping on luminescence decays of the I level in Er-doped AlO powders prepared by a sol-gel method. Front. Mater. Sci., 2008, 2(3): 286‒290 https://doi.org/10.1007/s11706-008-0051-3

References

1. Miniscalco W J . Erbium-doped glasses for fiber amplifiers at 1500 nm. Journal of Lightwave Technology, 1991, 9(2): 234–250. doi:10.1109/50.65882
2. Snoeks E, Kik P G, Polman A . Concentration quenching in erbium implanted alkali silicateglasses. Optical Materials, 1996, 5(3): 159–167. doi:10.1016/0925‐3467(95)00063‐1
3. Takahashi M, Shojiya M, Kanno R, et al.. Nonradiative decay process and mechanisms offrequency upconversion of Er3+ in ZrF4–BaF2–LaF3 glass. Journal of AppliedPhysics, 1997, 81(7): 2940–2945. doi:10.1063/1.364324
4. Brovelli S, Galli A, Lorenzi R, et al.. Efficient 1.53 μm erbium light emissionin heavily Er-doped titania-modified aluminium tellurite glasses. Journal of Non-Crystalline Solids, 2007, 353(22–23): 2150–2156. doi:10.1016/j.jnoncrysol.2007.02.052
5. Kurokawa Y, Ikoma T, Ishizaka T, et al.. Photo-properties of rare earth ion (Er3+, Eu3+ and Sm3+)-doped alumina films prepared by the sol-gel method. Chemical Physics Letter, 1998, 287(5–6): 737–741. doi:10.1016/S0009‐2614(98)00132‐8
6. Ishizaka T, Makino T, Segawa Y . Optical properties of rare earth ion (Nd3+, Er3+ and Tb3+)-doped alumina films prepared by the sol-gel method. Optical Materials, 2001, 15(4): 293–299. doi:10.1016/S0925‐3467(00)00045‐8
7. Multone X, Luo Y, Hoffmann P . Er-doped Al2O3 thin films deposited by high-vacuum chemical vapor deposition (HV-CVD). Materials Science and Engineering: B, 2008, 146(1–3): 35–40. doi:10.1016/j.mseb.2007.07.086
8. Hoven G N, Snoeks E, Polman A, et al.. Upconversion in Er-implanted Al2O3 waveguides. Journal of Applied Physics, 1996, 79(3): 1258–1266. doi:10.1063/1.361020
9. Serna R, Jimenez de Castro M, Chaos J A, et al.. Photoluminescence performanceof pulsed-laser deposited Al2O3 thin films with large erbium concentration. Journal of Applied Physics, 2001, 90(10): 5120–5125. doi:10.1063/1.1409575
10. Wang X J, Lei M K, Yang T, et al.. Phase structure and photoluminescence propertiesof Er3+-doped Al2O3 powders prepared by the sol-gel method. Optical Materials, 2004, 26(3): 247–252. doi:10.1016/j.optmat.2004.01.012
11. Ting C C, Chen S Y, Hsieh W F, et al.. Effect of yttrium codoping on photoluminescenceof erbium-doped TiO2 films. Journal of Applied Physics, 2001, 90(10): 5564–5569. doi:10.1063/1.1413490
12. Nga P T, Barthou C, Benalloul P, et al.. Effect of yttrium codoping on fluorescence lifetimesof Er3+ ions in SiO2–Al2O3 sol-gelglasses. Journal of Non-Crystalline Solids, 2006, 352(23–25): 2385–2389. doi:10.1016/j.jnoncrysol.2006.03.051
13. Toratani H, Izumitani T . Compositional dependenceof nonradiative decay rate in Nd laser glass. Journal of Non-Crystalline Solids, 1982, 52(1–3): 303–313. doi:10.1016/0022‐3093(82)90305‐2
14. Yeh D C, Sibley W A, Suscavage M, et al.. Radiation effects and optical transition inYb3+-doped barium-thorium fluoride glass. Journal of Non-Crystalline Solids, 1986, 88(1–2): 66–82. doi:10.1016/S0022‐3093(86)80088‐6
15. Layne C B, Weber M J . Multiphonon relaxation ofrare earth ions in beryllium-fluoride glass. Physical Review B, 1977, 16(7): 3259–3261. doi:10.1103/PhysRevB.16.3259
16. Auzel F, Pelle F . Excitation effects in non-radiativemultiphonon decays of rare earth doped laser materials. Optical Materials, 1997, 8(1–2): 15–20. doi:10.1016/S0925‐3467(97)00031‐1
17. Heber J, Neukum J, Altwein M, et al.. Interaction between excitations and rare earthions. Spectrochimica Acta Part A, 1998, 54(11): 1557–1569. doi:10.1016/S1386‐1425(98)00083‐3
AI Summary AI Mindmap
PDF(175 KB)

Accesses

Citations

Detail

Sections
Recommended

/