Enhanced cycle stability of spinel LiMnO by a melting impregnation method

QI Hao, CAO Gao-shao, XIE Jian, ZHAO Xin-bing

PDF(132 KB)
PDF(132 KB)
Front. Mater. Sci. ›› 2008, Vol. 2 ›› Issue (3) : 291-294. DOI: 10.1007/s11706-008-0050-4

Enhanced cycle stability of spinel LiMnO by a melting impregnation method

  • QI Hao, CAO Gao-shao, XIE Jian, ZHAO Xin-bing
Author information +
History +

Abstract

Spinel LiMn2O4 particles were successfully coated with CuO, MgO, ZnO, Al2O3 and CeO2 by a melting impregnation method. Except for the CeO2-coated sample, all the others exhibit better cycling stability than bare LiMn2O4 at room temperature and at 55°C. Among these samples, the ZnO-coated sample shows the best cycling stability. A capacity of 100 mA·h·g-1 still remained after 100 cycles at 55°C while the bare LiMn2O4 retains a capacity of only 80 mA·h·g-1 after the same number of cycles. The improvement in the cycling stability is attributed to the suppressed Mn dissolution caused by HF.

Cite this article

Download citation ▾
QI Hao, CAO Gao-shao, XIE Jian, ZHAO Xin-bing. Enhanced cycle stability of spinel LiMnO by a melting impregnation method. Front. Mater. Sci., 2008, 2(3): 291‒294 https://doi.org/10.1007/s11706-008-0050-4

References

1. Arora P, White R E . Capacity fade mechanism andside reactions in lithium ion batteries. Journal of the Electrochemical Society, 1998, 145(10): 3647–3667. doi:10.1149/1.1838857
2. Hunter J C . Preparation of a new crystal form of manganese dioxide: λ-MnO2. Journal of Solid StateChemistry, 1981, 39: 142–147. doi:10.1016/0022‐4596(81)90323‐6
3. Xia Y Y, Zhou Y H, Yoshio M . Capacity fading on cycling of 4 V Li/LiMn2O4 cells. Journalof the Electrochemical Society, 1997, 144(8): 2593–2600. doi:10.1149/1.1837870
4. Song G M, Li W J, Zhou Y . Synthesis of Mg-doped LiMn2O4 powders for lithium-ion battery by rotary heating. Materials Chemistry and Physics, 2004, 87: 162–167. doi:10.1016/j.matchemphys.2004.05.023
5. Yi T, Hu X, Gao K . Synthesis and physicochemical properties of LiAl0.05Mn1.95O4 cathode materialby the ultrasonic-assisted sol-gel method. Journal of Power Sources, 2006, 162: 636–643. doi:10.1016/j.jpowsour.2006.07.019
6. Li G H, Ikuta H, Uchida T, et al.. The spinel phases LiMyMn2-yO4 (M=Co,Cr, Ni) as the cathode for rechargeable lithium batteries. Journal of the Electrochemical Society, 1996, 143(1): 178–182. doi:10.1149/1.1836405
7. Yoshio M, Xia Y Y, Kumada N, et al.. Storage and cycling performance of Cr-modifiedspinel at elevated temperature. Journalof Power Sources, 2001, 101(1): 79–85. doi:10.1016/S0378‐7753(01)00546‐8
8. Hung F Y, Lui T S, Liao H C . A study of nano-sized surface coating on LiMn2O4 materials. Applied Surface Science, 2007, 253: 7443–7448. doi:10.1016/j.apsusc.2007.03.033
9. Liu D Q, Liu X Q, He Z Z . The elevated temperature performance of LiMn2O4 coated with Li4Ti5O12 for lithiumion battery. Materials Chemistry and Physics, 2007, 105: 362–366. doi:10.1016/j.matchemphys.2007.04.073
10. Şahan H, Göktepe H, Patat S, et al.. The effect of LBO coating method on electrochemicalperformance of LiMn2O4 cathode material. Solid State Ionics, 2008, 35–36: 1837–1842
11. Cabana J, Valdés-Solís T, Palacín M R, et al.. Enhanced high rateperformance of LiMn2O4 spinel nanoparticles synthesized by a hard-template route. Journal of Power Sources, 2007, 166: 492–498. doi:10.1016/j.jpowsour.2006.12.107
12. Wu X, Kim S B . Improvement of electrochemicalproperties of LiNi0.5Mn1.5O4 spinal. Journal of Power Sources, 2002, 109: 53–57
13. Xia Y Y, Yoshio M . An investigation of lithiumion insertion into spinel structure Li-Mn-O compounds. Journal of the Electrochemical Society, 1996, 143(3): 825–833. doi:10.1149/1.1836544
14. Rodriguez-Carvajal J, Rousse G, Masquelier C, et al.. Cubic-orthorhombic transition in the stoichiometricspinal LiMn2O4. Electrochemical and Solid-State Letters, 1999, 2(1): 6–8. doi:10.1149/1.1390716
AI Summary AI Mindmap
PDF(132 KB)

Accesses

Citations

Detail

Sections
Recommended

/