Molecular dynamics simulations of the adsorption of amino acids on the hydroxyapatite {100}-water interface

ZHANG Zhi-sen, PAN Hai-hua, TANG Rui-kang

PDF(324 KB)
PDF(324 KB)
Front. Mater. Sci. ›› 2008, Vol. 2 ›› Issue (3) : 239-245. DOI: 10.1007/s11706-008-0046-0

Molecular dynamics simulations of the adsorption of amino acids on the hydroxyapatite {100}-water interface

  • ZHANG Zhi-sen, PAN Hai-hua, TANG Rui-kang
Author information +
History +

Abstract

The understanding of interfaces and interaction of organic molecules and inorganic materials are the important issues in biomineralization. Experimentally, it has been found that amino acids (AA) can regulate the morphology of hydroxyapatite (HAP) crystals significantly. In this study, molecular dynamics simulation is employed to investigate the detailed adsorption behavior of polar, ionic, and hydrophobic AA on the {100} face of HAP at the atomic level. The results indicate that various AA are adsorbed on the HAP crystal surface mainly by amino and carboxylate groups at the specific sites. Multiple interaction points are found for polar and ionic AA. The adsorbed AA molecules occupy the Ca and P sites of the HAP surfaces which may inhibit and regulate the HAP growth. The adsorbed amino acid layer can also change the interfacial hydration layer and influence the transportation of ions in and out of HAP, which may be another strategy of biological control in biomineralization.

Cite this article

Download citation ▾
ZHANG Zhi-sen, PAN Hai-hua, TANG Rui-kang. Molecular dynamics simulations of the adsorption of amino acids on the hydroxyapatite {100}-water interface. Front. Mater. Sci., 2008, 2(3): 239‒245 https://doi.org/10.1007/s11706-008-0046-0

References

1. Kong L B, Ma J, Boey F . Nanosized hydroxyapatite powders derived from coprecipitationprocess. Journal of Materials Science, 2002, 37(6): 1131–1134. doi:10.1023/A:1014355103125
2. Misra D N . Adsorption from solutions on synthetic hydroxyapatite: Nonaqueousvs. aqueous solvents. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 1999, 48(6): 848–855. doi:10.1002/(SICI)1097‐4636(1999)48:6<848::AID‐JBM13>3.0.CO;2‐M
3. El Shafei G M S, Moussa N A . Adsorption of some essentialamino acids on hydroxyapatite. Journalof Colloid and Interface Science, 2001, 238(1): 160–166. doi:10.1006/jcis.2001.7474
4. Spanos N, Koutsoukos P G . Hydroxyapatite precipitationon a carboxylated vinyl chloride-vinyl acetate copolymer. Journal of Materials Science, 2001, 36(3): 573–578. doi:10.1023/A:1004899832583
5. Koutsopoulos S, Dalas E . Hydroxyapatite crystallizationin the presence of serine, tyrosine and hydroxyproline amino acidswith polar side groups. Journal of CrystalGrowth, 2000, 216(1): 443–449. doi:10.1016/S0022‐0248(00)00415‐2
6. Koutsopoulos S, Dalas E . The crystallization of hydroxyapatitein the presence of lysine. Journal of Colloidand Interface Science, 2000, 231(2): 207–212. doi:10.1006/jcis.2000.7144
7. Koutsopoulos S, Dalas E . The effect of acidic aminoacids on hydroxyapatite crystallization. Journal of Crystal Growth, 2000, 217(44): 410–415. doi:10.1016/S0022‐0248(00)00502‐9
8. Matsumoto T, Okazaki M, Inoue M, et al.. Crystallinity and solubility characteristicsof hydroxyapatite adsorbed amino acid. Biomaterials, 2002, 23(10): 2241–2247. doi:10.1016/S0142‐9612(01)00358‐1
9. Zahn D, Hochrein O . Computational study of interfacesbetween hydroxyapatite and water. PhysicalChemistry Chemical Physics, 2003, 5(18): 4004–4007. doi:10.1039/b306358e
10. Hauptmann S, Duffner H, Brickmann J, et al.. Potential energy function for apatites. Physical Chemistry Chemical Physics, 2003, 5(3): 635–639. doi:10.1039/b208209h
11. de Leeuw N H . A computer modelling study of the uptake and segregation of fluorideions at the hydrated hydroxyapatite (0001) surface: introducing aCa10(PO4)6(OH)2 potential model. Physical Chemistry Chemical Physics, 2004, 6(8): 1860–1866. doi:10.1039/b313242k
12. de Leeuw N H, Rabone J A L . Molecular dynamics simulationsof the interaction of citric acid with the hydroxyapatite (001) and(010) surfaces in an aqueous environment. CrystEngComm, 2007, 9(12): 1178–1186. doi:10.1039/b710974a
13. Pan H, Tao J, Xu X, et al.. Adsorption processes of Gly and Glu amino acidson hydroxyapatite surfaces at the atomic level. Langmuir, 2007, 23(17): 8972–8981. doi:10.1021/la700567r
14. Pan H, Tao J, Wu T, et al.. Molecular simulation of water behaviors on crystalfaces of hydroxyapatite. Frontiers of Chemistryin China, 2007, 2(2): 156–163. doi:10.1007/s11458‐007‐0032‐6
15. Chen X, Wang Q, Shen J, et al.. Adsorption of leucine-rich amelogenin proteinon hydroxyapatite (001) surface through –COO– claws. Journal of Physical Chemistry C, 2007, 111(3): 1284–1290. doi:10.1021/jp0646630
16. Dong X, Wang Q, Wu T, et al.. Understanding adsorption-desorption dynamicsof BMP-2 on hydroxyapatite (001) surface. Biophysical Journal, 2007, 93(3): 750–759. doi:10.1529/biophysj.106.103168
17. Shen J, Wu T, Wang Q, et al.. Molecular simulation of protein adsorption anddesorption on hydroxyapatite surfaces. Biomaterials, 2008, 29(5): 513–532. doi:10.1016/j.biomaterials.2007.10.016
18. Wilson R, Elliott J, Dowker S . Rietveld refinement of the crystallographic structureof human dental enamel apatites. AmericanMineralogist, 1999, 84(9): 1406–1414
19. Treboux G, Layrolle P, Kanzaki N, et al.. Existence of Posner's cluster in vacuum. Journal of Physical Chemistry A, 2000, 104(21): 5111–5114. doi:10.1021/jp994399t
20. Sato K, Kogure T, Iwai H, et al.. Atomic-scale {100} interfacial structure inhydroxyapatite determined by high-resolution transmission electronmicroscopy. Journal of the American CeramicSociety, 2002, 85(12): 3054–3058
21. Park C, Fenter P, Zhang Z, et al.. Structure of the fluorapatite (100)-water interfaceby high-resolution X-ray reflectivity. American Mineralogist, 2004, 89(11–12): 1647–1654
22. Berendsen H, Postma J P M, van Gunsteren W F, et al.. Intermolecular Forces. Dordrecht: D. Reidel Publishing Company, 1981, 331–342
23. Jorgensen W L, Tirado-Rives J . The OPLS potential functionsfor proteins. Energy minimizations for crystals of cyclic peptidesand crambin. Journal of the American ChemicalSociety, 1988, 110(6): 1657–1666. doi:10.1021/ja00214a001
24. Berendsen H, van der Spoel D, van Drunen R . GROMACS: A message-passing parallel molecular dynamicsimplementation. Computer Physics Communications, 1995, 91(1–3): 43–56. doi:10.1016/0010‐4655(95)00042‐E
25. Lindahl E, Hess B, van der Spoel D . Gromacs 3.0: A package for molecular simulation and trajectoryanalysis. Journal of Molecular Modeling, 2001, 7(8): 306–317
26. Darden T, York D, Pedersen L . Particle mesh Ewald: An N log(N) method for Ewald sumsin large systems. Journal of Chemical Physics, 1993, 98(12): 10089–10092. doi:10.1063/1.464397
27. Essmann U, Perera L, Berkowitz M, et al.. A smooth particle mesh Ewald method. Journal of Chemical Physics, 1995, 103(19): 8577–8593. doi:10.1063/1.470117
28. Berendsen H, Postma J P M, van Gunsteren W F, et al.. Molecular-Dynamics with couplingto an external bath. Journal of ChemicalPhysics, 1984, 81(8): 3684–3690. doi:10.1063/1.448118
29. Wilson E, Awonusi A, Morris M, et al.. Highly ordered interstitial water observed inbone by nuclear magnetic resonance. Journalof Bone and Mineral Research, 2005, 20(4): 625–634. doi:10.1359/JBMR.041217
30. Wilson E, Awonusi A, Morris M, et al.. Three structural roles for water in bone observedby solid-state NMR. Biophysical Journal, 2006, 90(10): 3722–3731. doi:10.1529/biophysj.105.070243
31. Mkhonto D, de Leeuw N . A computer modeling studyof the effect of water on the surface structure and morphology offluorapatite: introducing a Ca10(PO4)6F2 potentialmodel. Journal of Materials Chemistry, 2002, 12(9): 2633–2642. doi:10.1039/b204111a
32. Petersen F N R, Jensen M, Nielsen C H . Interfacial tryptophan residues: A role for the cation-effect?BiophysicalJournal, 2005, 89(6): 3985–3996. doi:10.1529/biophysj.105.061804
33. Dougherty D A . Cation- interactions involving aromatic amino acids. Journal of Nutrition, 2007 137(6): 1504S–1508S
34. Teng H H, Dove P M, Orme C A, et al.. Thermodynamics of calcite growth: Baseline forunderstanding biomineral formation. Science, 1998, 282(5389): 724–727. doi:10.1126/science.282.5389.724
35. Orme C A, Noy A, Wierzbicki A, et al.. Formation of chiral morphologies through selectivebinding of amino acids to calcite surface steps. Nature, 2001, 411(6839): 775–779. doi:10.1038/35081034
36. de Yoreo J J, Dove P M . Shaping crystals with biomolecules. Science, 2004, 306(5700): 1301–1302. doi:10.1126/science.1100889
37. Shaw W J, Campbell A A, Paine M L, et al.. The COOH terminus of the amelogenin, LRAP, isoriented next to the hydroxyapatite surface. Journal of Biological Chemistry, 2004, 279(39): 40263–40266. doi:10.1074/jbc.C400322200
38. Stayton P S, Drobny G P, Shaw W J, et al.. Molecular recognition at the protein-hydroxyapatiteinterface. Critical Reviews in Oral Biologyand Medicine, 2003, 14(5): 370–376
39. Robinson C, Connell S, Brookes S J, et al.. Surface chemistry of enamel apatite during maturationin relation to pH: implications for protein removal and crystal growth. Archives of Oral Biology, 2005, 50(2): 267–270. doi:10.1016/j.archoralbio.2004.11.017
40. Agmon N . TheGrotthuss mechanism. Chemical Physics Letters, 1995, 244(5): 456–462. doi:10.1016/0009‐2614(95)00905‐J
41. Marx D, Tuckerman M E, Hutter J, et al.. The nature of the hydrated excess proton inwater. Nature, 1999, 397(6720): 601–604. doi:10.1038/17579
42. Mohammed O F, Pines D, Dreyer J, et al.. Sequential proton transfer through water bridgesin acid-base reactions. Science, 2005, 310(5745): 83–86. doi:10.1126/science.1117756
AI Summary
PDF(324 KB)

Accesses

Citations

Detail

Sections
Recommended

/