Thermal decomposition studies of CuInS

CHAKI Sunil

PDF(88 KB)
PDF(88 KB)
Front. Mater. Sci. ›› 2008, Vol. 2 ›› Issue (3) : 322-325. DOI: 10.1007/s11706-008-0041-5

Thermal decomposition studies of CuInS

  • CHAKI Sunil
Author information +
History +

Abstract

Single crystals of copper indium disulphide (CuInS2) have been successfully grown by the chemical vapour transport (CVT) technique using iodine as the transporting agent. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were carried out for the CVT grown CuInS2 single crystals. It was revealed that the crystals are thermally stable between the ambient temperature (300 K) and 845 K and that the decomposition occurs sequentially in three steps. The kinetic parameters, e.g., activation energy, order of reaction, and frequency factor were evaluated using non-mechanistic equations for thermal decomposition.

Cite this article

Download citation ▾
CHAKI Sunil. Thermal decomposition studies of CuInS. Front. Mater. Sci., 2008, 2(3): 322‒325 https://doi.org/10.1007/s11706-008-0041-5

References

1. Tell B, Shay J L, Kasper H M . Room-temperature electrical properties of ten I-III-VI2 semiconductors. Journalof Applied Physics, 1972, 43: 2469–2470. doi:10.1063/1.1661532
2. Binsma J J M, Giling L J, Bloem J . Phase relations in the system Cu2S-In2S3. Journal of Crystal Growth, 1980, 50(2): 429–436. doi:10.1016/0022‐0248(80)90090‐1
3. Chaki S H, Agarwal A . Growth, surface microtopographicand thermal studies of CuInS2. Journal of Crystal Growth, 2007, 308(1): 176–179. doi:10.1016/j.jcrysgro.2007.07.031
4. Kamruddin M, Ajitkumar P K, Dash S, et al.. Thermogravimetry-evolved gas analysis-mass spectrometrysystem for materials research. Bulletinof Materials Science, 2003, 26(4): 449–460. doi:10.1007/BF02711191
5. Gallagher P K . Applications of evolved gas analysis to the study of inorganic materialsand processes. Journal of Thermal Analysisand Calorimetry, 1982, 25(1): 7–20. doi:10.1007/BF01913051
6. Michel E B . Handbook of Thermal Analysis: Principles & Practice. New York: Elsevier Publication, 1998, 509
7. Ohrbach K-H, Radhoff G, Kettrup A . Thermal degradation of metal acetylacetonates with divalentmetals by a combined TG-DTA-MS technique. Thermochimica Acta, 1983, 67(2–3): 189–195. doi:10.1016/0040‐6031(83)80098‐7
8. Vyazovkin S, Wight C A . Isothermal and non-isothermalkinetics of thermally stimulated reactions of solids. International Reviews in Physical Chemistry, 1998, 17(3): 407–433. doi:10.1080/014423598230108
9. Horowitz H H, Metzger G . A new analysis of thermogravimetrictraces. Analytical Chemistry, 1963, 35(10): 1464–1468. doi:10.1021/ac60203a013
10. Wendlandt W W . Thermal Methods of Analysis. New York: Interscience Publishers, 1964
11. Herpin P, Pierrot R . La weilite, CaH(AsO4), un nouvel arséniate de calcium isomorphe dela monétite. Bulletin de la SociétéFranc¸aise de Minéralogie et de Cristallographie, 1963, 86: 368–372
12. Broido A . Asimple sensitive graphical method of treating thermogravimetric analysisdata. Journal of Polymer Science Part A-2, 1969, 7(10): 1761–1773. doi:10.1002/pol.1969.160071012
13. Piloyan G O, Novikova O S . Russian Journal of OrganicChemistry, 1966, 12: 313–319
14. Coats A W, Redfern J P . Kinetic parameters from thermogravimetricdata. Nature, 1964, 201(4914): 68. doi: 10.1038/201068a0
AI Summary AI Mindmap
PDF(88 KB)

Accesses

Citations

Detail

Sections
Recommended

/