PDF(595 KB)
Calcium phosphate coating on magnesium alloy
by biomimetic method: Investigation of morphology, composition and
formation process
- YANG Jing-xin1, JIAO Yan-peng1, YIN Qing-shui2, ZHANG Yu2, ZHANG Tao2
Author information
+
1.Advanced Materials Laboratory, Department of Materials Science and Engineering, Tsinghua University; 2.Department of Orthopedics, General Hospital of Guangzhou Military Command of PLA;
Show less
History
+
Published |
05 Jun 2008 |
Issue Date |
05 Jun 2008 |
Abstract
Magnesium alloy has similar mechanical properties with natural bone and can degrade via corrosion in the electrolytic environment of the human body. Calcium phosphate has been proven to possess bioactivity and bone inductivity. In order to integrate both advantages, calcium phosphate coating was fabricated on magnesium alloy by a biomimetic method. Supersaturated calcification solutions (SCSs) with different Ca/P ratio and Cl- concentration were used as mimetic solutions. The morphology, composition and formation process of the coating were studied with scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results show that a uniform calcium phosphate coating was observed on magnesium alloy, the properties of which could be adjusted by the SCSs with different Ca/P ratio. The formation process of the coating was explored by immersing magnesium alloy in SCSs with different Cl- concentration which could adjust the hydrogen production. According to SEM results, the hydrogen bubbles were associated with the formation of grass-like and flower-like coating morphologies. In conclusion, the biomimetic method was effective to form calcium phosphate coating on magnesium alloy and the morphology and composition of the coating could be accommodated by the Ca/P ratio and Cl- concentration in SCSs.
Cite this article
Download citation ▾
YANG Jing-xin, JIAO Yan-peng, YIN Qing-shui, ZHANG Yu, ZHANG Tao.
Calcium phosphate coating on magnesium alloy
by biomimetic method: Investigation of morphology, composition and
formation process. Front. Mater. Sci., 2008, 2(2): 149‒155 https://doi.org/10.1007/s11706-008-0025-5
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Niinomi M Recentmetallic materials for biomedical applicationsMetallurgical and Materials Transactions A: Physical Metallurgy andMaterials Science 2002 33(3)477486. doi:10.1007/s11661‐002‐0109‐2
2. Niinomi M Hanawa T Narushima T Japanese research and development on metallic biomedical,dental, and healthcare materialsJOM 2005 57(4)1824. doi:10.1007/s11837‐005‐0076‐3
3. Jacobs J J Hallab N J Skipor A K et al.Metal degradation products – A cause for concernin metal-metal bearings?Clinical Orthopaedicsand Related Research 2003 417139147
4. Lhotka C Szekeres T Steffan I et al.Four-year study of cobalt and chromium blood levelsin patients managed with two different metal-on-metal total hip replacementsJournal of Orthopaedic Research 2003 21(2)189195. doi:10.1016/S0736‐0266(02)00152‐3
5. Wang M L Nesti L J Tuli R et al.Titanium particles suppress expression of osteoblasticphenotype in human mesenchymal stem cellsJournal of Orthopaedic Research 2002 20(6)11751184. doi:10.1016/S0736‐0266(02)00076‐1
6. Nagels J Stokdijk M Rozing P M Stress shielding and bone resorption in shoulder arthroplastyJournal of Shoulder and Elbow Surgery 2003 12(1)3539. doi:10.1067/mse.2003.22
7. Rashmirraven A M Richardson D C Aberman H M et al.The response of cancellous and cortical canine boneto hydroxylapatite-coated and uncoated titanium rodsJournal of Applied Biomaterials 1995 6(4)237242. doi:10.1002/jab.770060404
8. Sevilla P Aparicio C Planell J A et al.Comparison of the mechanical properties betweentantalum and nickel-titanium foams implant materials for bone ingrowthapplicationsJournal of Alloys and Compounds 2007 439(1–2)6773. doi:10.1016/j.jallcom.2006.08.069
9. van der Elst M Bramer J A M Klein C P A T et al.Biodegradable interlocking nails for fracture fixationClinical Orthopaedics and Related Research 1998 357192204. doi:10.1097/00003086‐199812000‐00025
10. Staiger M P Pietak A M Huadmai J et al.Magnesium and its alloys as orthopedic biomaterials:A reviewBiomaterials 2006 27(9)17281734. doi:10.1016/j.biomaterials.2005.10.003
11. Witte F Kaese V Haferkamp H et al.In vivo corrosionof four magnesium alloys and the associated bone responseBiomaterials 2005 26(17)35573563. doi:10.1016/j.biomaterials.2004.09.049
12. Wen C E Mabuchi M Yamada Y et al.Processing of biocompatible porous Ti and MgScripta Materialia 2001 45(10)11471153. doi:10.1016/S1359‐6462(01)01132‐0
13. Witte F Feyerabend F Maier P et al.Biodegradable magnesium-hydroxyapatite metal matrixcompositesBiomaterials 2007 28(13)21632174. doi:10.1016/j.biomaterials.2006.12.027
14. Witte F Fischer J Nellesen J et al.In vitro and in vivo corrosion measurements of magnesiumalloysBiomaterials 2006 27(7)10131018. doi:10.1016/j.biomaterials.2005.07.037
15. Witte F Reifenrath J Muller P P et al.Cartilage repair on magnesium scaffolds used asa subchondral bone replacementMaterialwissenschaftund Werkstofftechnik 2006 37(6)504508. doi:10.1002/mawe.200600027
16. Witte F Ulrich H Palm C et al.Biodegradable magnesium scaffolds: Part II: Peri-implantbone remodelingJournal of Biomedical MaterialsResearch Part A 2007 81(3)757765. doi:10.1002/jbm.a.31293
17. Witte F Ulrich H Rudert M et al.Biodegradable magnesium scaffolds: Part I: Appropriateinflammatory responseJournal of BiomedicalMaterials Research Part A 2007 81(3)748756. doi:10.1002/jbm.a.31170
18. Liu C L Xin Y C Tang G Y et al.Influence of heat treatment on degradation behaviorof bio-degradable die-cast AZ63 magnesium alloy in simulated bodyfluidMaterials Science and EngineeringA: Structural Materials Properties Microstructure and Processing 2007 456(1–2)350357
19. Liu C G Xin Y C Tian X B et al.Corrosion resistance of titanium ion implanted AZ91magnesium alloyJournal of Vacuum Scienceand Technology A: Vacuum, Surfaces, and Films 2007 25(2)334339. doi:10.1116/1.2699371
20. Hoche H Allebrandt D Scheerer H et al.Design of wear and corrosion resistant PVD-coatingsfor magnesium alloysMaterialwissenschaftund Werkstofftechnik 2007 38(5)365371. doi:10.1002/mawe.200700143
21. Raman R K S Murray S Brandt M Laser assisted modification of surface microstructure forlocalised corrosion resistance of magnesium alloysSurface Engineering 2007 23(2)107111. doi:10.1179/174329407X169511
22. Zeng R C Zhang J Huang W J et al.Review of studies on corrosion of magnesium alloysTransactions of Nonferrous Metals Society of China 2006 16S763S771. doi:10.1016/S1003‐6326(06)60297‐5
23. Song G L Recentprogress in corrosion and protection of magnesium alloysAdvanced Engineering Materials 2005 7(7)563586. doi:10.1002/adem.200500013
24. Li F Feng Q L Cui F Z et al.A simple biomimetic method for calcium phosphatecoatingSurface and Coatings Technology 2002 154(1)8893. doi:10.1016/S0257‐8972(01)01710‐8
25. Baker K C Anderson M A Oehlke S A et al.Growth, characterization and biocompatibility ofbone-like calcium phosphate layers biomimetically deposited on metallicsubstrataMaterials Science and EngineeringC: Biomimetic and Supramolecular Systems 2006 26(8)13511360
26. Liang F H Wang K G Zhou L Formation of apatite on porous titanium in different supersaturatedcalcification solutionRare Metal Materialsand Engineering 2004 33(2)166170
27. Feng B Weng J Zhao J et al.Fabrication of TiO2-apatitecomposite coating on titanium by a chemical methodKey Engineering Materials 2003 240–242323326
28. Wen H B de Wijn J R Cui F Z et al.Preparation of calcium phosphate coatings on titaniumimplant materials by simple chemistryJournalof Biomedical Materials Research 1998 41(2)227236. doi:10.1002/(SICI)1097‐4636(199808)41:2<227::AID‐JBM7>3.0.CO;2‐K
29. Wen H B DeWijn J R Liu Q et al.A simple method to prepare calcium phosphate coatingson Ti6Al4VJournal of Materials Science:Materials in Medicine 1997 8(12)765770. doi:10.1023/A:1018512612695
30. Feng Q L Wang H Cui F Z et al.Controlled crystal growth of calcium phosphate ontitanium surface by NaOH-treatmentJournalof Crystal Growth 1999 200(3–4)550557. doi:10.1016/S0022‐0248(98)01402‐X
31. Wen H B van den Brink J de Wijn J R et al.Crystal growth of calcium phosphate on chemicallytreated titaniumJournal of Crystal Growth 1998 186(4)616623. doi:10.1016/S0022‐0248(97)00824‐5
32. Wu W J Zhuang H Z Nancollas G H Heterogeneous nucleation of calcium phosphates on solidsurfaces in aqueous solutionJournal ofBiomedical Materials Research 1997 35(1)9399. doi:10.1002/(SICI)1097‐4636(199704)35:1<93::AID‐JBM9>3.0.CO;2‐H