Age as a limiting factor for effectiveness of photostimulation of brain drainage and cognitive functions

Terskov Andrey , Shirokov Alexander , Blokhina Inna , Zlatogorskaya Daria , Adushkina Viktoria , Semiachkina-Glushkovskaia Anastasiia , Atul Kumar , Fedosov Ivan , Evsukova Arina , Semyachkina-Glushkovskaya Oxana

Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (2) : 6

PDF (3901KB)
Front. Optoelectron. ›› 2025, Vol. 18 ›› Issue (2) : 6 DOI: 10.1007/s12200-025-00149-3
RESEARCH ARTICLE

Age as a limiting factor for effectiveness of photostimulation of brain drainage and cognitive functions

Author information +
History +
PDF (3901KB)

Abstract

The progressive number of old adults with cognitive impairment worldwide and the lack of effective pharmacologic therapies require the development of non-pharmacologic strategies. The photobiomodulation (PBM) is a promising method in prevention of early or mild age-related cognitive impairments. However, it remains unclear the efficacy of PBM for old patients with significant age-related cognitive dysfunction. In our study on male mice, we show a gradual increase in the brain amyloid beta (Aβ) levels and a decrease in brain drainage with age, which, however, is associated with a decline in cognitive function only in old (24 months of age) mice but not in middle-aged (12 months of age) and young (3 month of age) animals. These age-related features are accompanied by the development of hyperplasia of the meningeal lymphatic vessels (MLVs) in old mice underlying the decrease in brain drainage. PBM improves cognitive training exercises and Aβ clearance only in young and middle-aged mice, while old animals are not sensitive to PBM. These results clearly demonstrate that the PBM effects on cognitive function are correlated with age-mediated changes in the MLV network and may be effective if the MLV function is preserved. These findings expand fundamental knowledge about age differences in the effectiveness of PBM for improvement of cognitive functions and Aβ clearance as well as about the lymphatic mechanisms responsible for age decline in sensitivity to the therapeutic PBM effects.

Graphical abstract

Keywords

Photobiomodulation / Aging brain / Meningeal lymphatic vessels / Brain drainage / Cognitive functions

Cite this article

Download citation ▾
Terskov Andrey, Shirokov Alexander, Blokhina Inna, Zlatogorskaya Daria, Adushkina Viktoria, Semiachkina-Glushkovskaia Anastasiia, Atul Kumar, Fedosov Ivan, Evsukova Arina, Semyachkina-Glushkovskaya Oxana. Age as a limiting factor for effectiveness of photostimulation of brain drainage and cognitive functions. Front. Optoelectron., 2025, 18(2): 6 DOI:10.1007/s12200-025-00149-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Erickson,M.A., Banks,W.A.: Age-associated changes in the immune system and blood-brain barrier functions. Int. J. Mol. Sci. 20 (7), 1632 (2019)

[2]

Zia,A., Pourbagher-Shahri,A.M., Farkhondeh,T., Samarghandian,S.: Molecular and cellular pathways contributing to brain aging. Behav. Brain Funct. 17 (1), 6 (2021)

[3]

Cole,J.H., Marioni,R.E., Harris,S.E., Deary,I.J.: Brain age and other bodily ‘ages’: implications for neuropsychiatry. Mol. Psychiatry 24 (2), 266- 281 (2019)

[4]

Livingston,G., Huntley,J., Sommerlad,A., Ames,D., Ballard,C., Banerjee,S., Brayne,C., Burns,A., Cohen-Mansfield,J., Cooper,C., Costafreda,S.G., Dias,A., Fox,N., Gitlin,L.N., Howard,R., Kales,H.C., Kivimäki,M., Larson,E.B., Ogunniyi,A., Orgeta,V., Ritchie,K., Rockwood,K., Sampson,E.L., Samus,Q., Schneider,L.S., Selbæk,G., Teri,L., Mukadam,N.: Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396 (10248), 413- 446 (2020)

[5]

Trambaiolli,L.R., Cassani,R., Mehler,D.M.A., Falk,T.H.: Neurofeedback and the aging brain: a systematic review of training protocols for dementia and mild cognitive impairment. Front. Aging Neurosci. 13, 682683 (2021)

[6]

Chan,A.S., Lee,T.L., Yeung,M.K., Hamblin,M.R.: Photobiomodulation improves the frontal cognitive function of older adults. Int. J. Geriatr. Psychiatry 34 (2), 369- 377 (2019)

[7]

Rodríguez-Fernández,L., Zorzo,C., Arias,J.L.: Photobiomodulation in the aging brain: a systematic review from animal models to humans. Geroscience 46 (6), 6583- 6623 (2024)

[8]

Cardoso,F.D.S., Gonzalez-Lima,F., Gomes da Silva,S.: Photobiomodulation for the aging brain. Ageing Res. Rev. 70, 101415 (2021)

[9]

Lee,T.I., Chan,A.S.: Photobiomodulation may enhance cognitive efficiency in older adults: a functional near-infrared spectroscopy study. Front. Aging Neurosci. 15, 1096361 (2023)

[10]

Gao,Y., An,R., Huang,X., Liu,W., Yang,C., Wan,Q.: Effectiveness of photobiomodulation for people with age-related cognitive impairment: a systematic review and meta-analysis. Lasers Med. Sci. 38 (1), 237 (2023)

[11]

Baik,J.S., Lee,T.Y., Kim,N.G., Pak,K., Ko,S.H., Min,J.H., Shin,Y.I.: Effects of photobiomodulation on changes in cognitive function and regional cerebral blood flow in patients with mild cognitive impairment: a pilot uncontrolled trial. J. Alzheimers Dis. 83 (4), 1513- 1519 (2021)

[12]

Chan,A.S., Yeung,M.K., Lee,T.L.: Can photobiomodulation enhance brain function in older adults? In: Hamblin, M.R., Huang, Y.Y. (eds.) Photobiomodulation in the brain: low-level laser (light) therapy in neurology and neuroscience, pp. 427-446. Academic Press, United Kingdom (2019)

[13]

Li,D.Y., Liu,S.J., Yu,T.T., Liu,Z., Sun,S.L., Bragin,D., Shirokov,A., Navolokin,N., Bragina,O., Hu,Z.W., Kurths,J., Fedosov,I., Blokhina,I., Dubrovski,A., Khorovodov,A., Terskov,A., Tzoy,M., Semyachkina-Glushkovskaya,O., Zhu,D.: Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage. Nat. Commun. 14 (6104), 1 (2023)

[14]

Liu,S., Li,D., Yu,T., Zhu,J., Semyachkina-Glushkovskaya,O., Zhu,D.: Transcranial photobiomodulation improves insulin therapy in diabetic mice: modulation of microglia and the brain drainage system. Commun. Biol. 6, 1239 (2023)

[15]

Semyachkina-Glushkovskaya,O., Shirokov,A., Blokhina,I., Fedosov,I., Terskov,A., Dubrovsky,A., Tsoy,M., Zlatogosrskaya,D., Adushkina,V., Evsukova,A., Telnova,V., Tzven,A., Krupnova,V., Manzhaeva,M., Dmitrenko,A., Penzel,T., Kurths,J.: Mechanisms of phototherapy of Alzheimer’s disease during sleep and wakefulness: the role of the meningeal lymphatics. Front Optoelectron. 16 (3), 22 (2023)

[16]

Li,D., Lin,H., Sun,S., Liu,S., Liu,Z., He,Y., Zhu,J., Xu,J., Semyachkina-Glushkovskaya,O., Yu,T., Zhu,D.: Photostimulation of lymphatic clearance of β- amyloid from mouse brain: new strategy for the therapy of Alzheimer’s disease. Front Optoelectron. 16 (45), 1 (2023)

[17]

Semyachkina-Glushkovskaya,O., Fedosov,I., Zaikin,A., Ageev,V., Ilyukov,E., Myagkov,D., Tuktarov,D., Blokhina,I., Shirokov,A., Terskov,A., Zlatogorskaya,D., Adushkina,V., Evsukova,A., Dubrovsky,A., Tsoy,M., Telnova,V., Manzhaeva,M., Dmitrenko,A., Krupnova,V., Kurths,J.: Technology of the photobiostimulation of the brain’s drainage system during sleep for improvement of learning and memory in male mice. Biomed. Opt. Express 15 (1), 44- 58 (2024)

[18]

Blokina,I., Iluykov,E., Myagkov,D., Tuktarov,D., Popov,S., Inozemzev,T., Fedosov,I., Shirokov,A., Terskov,A., Dmitrenko,A., Evsyukova,A., Zlatogorskaya,D., Adushkina,V., Tuzhilkin,M., Manzhaeva,M., Krupnova,V., Dubrovsky,A., Elizarova,I., Tzoy,M., Semyachkina-Glushkovskaya,O.: Photobiomodulation under electroencephalographic controls of sleep for stimulation of lymphatic removal of toxins from mouse brain. J. Vis. Exp. 208, e67035 (2024)

[19]

Da Mesquita,S., Louveau,A., Vaccari,A., Smirnov,I., Cornelison,R.C., Kingsmore,K.M., Contarino,C., Onengut-Gumuscu,S., Farber,E., Raper,D., Viar,K.E., Powell,R.D., Baker,W., Dabhi,N., Bai,R., Cao,R., Hu,S., Rich,S.S., Munson,J.M., Lopes,M.B., Overall,C.C., Acton,S.T., Kipnis,J.: Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560 (7717), 185- 191 (2018)

[20]

Ahn,J.H., Cho,H., Kim,J.H., Kim,S.H., Ham,J.S., Park,I., Suh,S.H., Hong,S.P., Song,J.H., Hong,Y.K., Jeong,Y., Park,S.H., Koh,G.Y.: Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572 (7767), 62- 66 (2019)

[21]

Gonzalez-Loyola,A., Petrova,T.: Development and aging of the lymphatic vascular system. Adv. Drug Deliv. Rev. 169, 63- 78 (2021)

[22]

Bridenbaugh,E.A., Nizamutdinova,I.T., Jupiter,D., Nagai,T., Thangaswamy,S., Chatterjee,V., Gashev,A.A.: Lymphatic muscle cells in rat mesenteric lymphatic vessels of various ages. Lymphat. Res. Biol. 11 (1), 35- 42 (2013)

[23]

Zawieja,D.C., Davis,K.L., Schuster,R., Hinds,W.M., Granger,H.J.: Distribution, propagation, and coordination of contractile activity in lymphatics. Am. J. Physiol. 264, H1283- H1291 (1993)

[24]

Muthuchamy,M., Gashev,A.A., Boswell,N., Dawson,N., Zawieja,D.C.: Molecular and functional analyses of the contractile apparatus in lymphatic muscle. FASEB J. 17 (8), 920- 922 (2003)

[25]

Akl,T.J., Nagai,T., CotéG.L., Gashev,A.A.: Mesenteric lymph flow in adult and aged rats. Am. J. Physiol. Heart Circ. Physiol. 301 (5), H1828- H1840 (2011)

[26]

Nagai,T., Bridenbaugh,E.A., Gashev,A.A.: Aging-associated alterations in contractility of rat mesenteric lymphatic vessels. Microcirculation 18 (6), 463- 473 (2011)

[27]

Guo,X., Zhang,G., Peng,Q., Huang,L., Zhang,Z., Zhang,Z.: Emerging roles of meningeal lymphatic vessels in Alzheimer’s disease. J. Alzheimers Dis. 94 (s1), S355- S366 (2023)

[28]

Wang,M., Yan,C., Li,X., Yang,T., Wu,S., Liu,Q., Luo,Q., Zhou,F.: Non-invasive modulation of meningeal lymphatics ameliorates ageing and Alzheimer’s disease-associated pathology and cognition in mice. Nat. Commun. 15 (1), 1453 (2024)

[29]

Bohlen,H.G., Gasheva,O.Y., Zawieja,D.C.: Nitric oxide formation by lymphatic bulb and valves is a major regulatory component of lymphatic pumping. Am. J. Physiol. Heart Circ. Physiol. 301 (5), H1897- H1906 (2011)

[30]

Kunert,C., Baish,J.W., Liao,S., Padera,T.P., Munn,L.L.: Mechanobiological oscillators control lymph flow. Proc. Natl. Acad. Sci. U.S.A. 112 (35), 10938- 10943 (2015)

[31]

Scallan,J.P., Zawieja,S.D., Castorena-Gonzalez,J.A., Davis,M.J.: Lymphatic pumping: mechanics, mechanisms and malfunction. J. Physiol. 594 (20), 5749- 5768 (2016)

[32]

Schmid-Schönbein,G.: Nitric oxide (NO) side of lymphatic flow and immune surveillance. Proc. Natl. Acad. Sci. U.S.A. 109 (1), 3- 4 (2012)

[33]

Semyachkina-Glushkovskaya,O.: A direct 1O2 generation in living tissues: new advanced technologies for the therapy of brain diseases. Med. Gas Res. 15 (2), 208- 209 (2025)

[34]

Dremin,V., Semyachkina-Glushkovskaya,O., Rafailov,E.: Direct laser-induced singlet oxygen in biological systems: application from in vitro to in vivo. IEEE J. Sel. Top. Quantum Electron. 29 (4), 1- 11 (2023)

[35]

Semyachkina-Glushkovskaya,O., Sokolovski,S., Fedosov,I., Shirokov,A., Navolokin,N., Bucharskaya,A., Blokhina,I., Terskov,A., Dubrovski,A., Telnova,V., Tzven,A., Tzoy,M., Evsukova,A., Zhlatogosrkaya,D., Adushkina,V., Dmitrenko,A., Manzhaeva,M., Krupnova,V., Noghero,A., Bragin,D., Bragina,O., Borisova,E., Kurths,J., Rafailov,E.: Transcranial photosensitiserfree laser treatment of glioblastoma in rat brain. Int. J. Mol. Sci. 24 (18), 13696 (2023)

[36]

Karu,T.I., Pyatibrat,L.V., Afanasyeva,N.I.: Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg. Med. 36 (4), 307- 314 (2005)

[37]

Murad,F.: Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Biosci. Rep. 24 (4-5), 452- 474 (2004)

[38]

Liao,S., Cheng,G., Conner,D.A., Huang,Y., Kucherlapati,R.S., Munn,L.L., Ruddle,N.H., Jain,R.K., Fukumura,D., Padera,T.P.: Impaired lymphatic contraction associated with immunosuppression. Proc. Natl. Acad. Sci. U.S.A. 108 (46), 18784- 18789 (2011)

[39]

Sabine,A., Agalarov,Y., Maby-El Hajjami,H., Jaquet,M., Hägerling,R., Pollmann,C., Bebber,D., Pfenniger,A., Miura,N., Dormond,O., Calmes,J.M., Adams,R.H., Mäkinen,T., Kiefer,F., Kwak,B.R., Petrova,T.V.: Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev. Cell 22 (2), 430- 445 (2012)

[40]

Sweet,D.T., Jiménez,J.M., Chang,J., Hess,P.R., Mericko-Ishizuka,P., Fu,J., Xia,L., Davies,P.F., Kahn,M.L.: Lymph flow regulates collecting lymphatic vessel maturation in vivo. J. Clin. Invest. 125 (8), 2995- 3007 (2015)

[41]

Sabine,A., Bovay,E., Demir,C.S., Kimura,W., Jaquet,M., Agalarov,Y., Zangger,N., Scallan,J.P., Graber,W., Gulpinar,E., Kwak,B.R., Mäkinen,T., Martinez-Corral,I., Ortega,S., Delorenzi,M., Kiefer,F., Davis,M.J., Djonov,V., Miura,N., Petrova,T.V.: FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. J. Clin. Invest. 125 (10), 3861- 3877 (2015)

[42]

Cho,H., Kim,J., Ahn,J.H., Hong,Y.K., Mäkinen,T., Lim,D.S., Koh,G.Y.: YAP and TAZ negatively regulate Prox1 during developmental and pathologic lymphangiogenesis. Circ. Res. 124 (2), 225- 242 (2019)

[43]

Blivet,G., Relano-Gines,A., Wachtel,M., Touchon,J.: A randomized, double-blind, and sham-controlled trial of an innovative brain-gut photobiomodulation therapy: safety and patient compliance. J. Alzheimers Dis. 90 (2), 811- 822 (2022)

[44]

Herkes,G., McGee,C., Liebert,A., Bicknell,B., Isaac,V., Kiat,H., McLachlan,C.S.: A novel transcranial photobiomodulation device to address motor signs of Parkinson’s disease: a parallel randomised feasibility study. EClinicalMedicine 66, 102338 (2023)

[45]

Dutta,S., Sengupta,P.: Men and mice: relating their ages. Life Sci. 152, 244- 248 (2016)

[46]

McWain,M.A., Pace,R.L., Nalan,P.A., Lester,D.B.: Agedependent effects of social isolation on mesolimbic dopamine release. Exp. Brain Res. 240 (10), 2803- 2815 (2022)

[47]

Louveau,A., Smirnov,I., Keyes,T.J., Eccles,J.D., Rouhani,S.J., Peske,J.D., Derecki,N.C., Castle,D., Mandell,J.W., Lee,K.S., Harris,T.H., Kipnis,J.: Structural and functional features of central nervous system lymphatic vessels. Nature 523 (7560), 337- 341 (2015)

[48]

Louveau,A., Kipnis,J.: Dissection and immunostaining of mouse whole-mount meninges. Available at the website of nature.com/protocolexchange/protocols/3965

[49]

Schindelin,J., Arganda-Carreras,I., Frise,E., Kaynig,V., Longair,M., Pietzsch,T., Preibisch,S., Rueden,C., Saalfeld,S., Schmid,B., Tinevez,J.Y., White,D.J., Hartenstein,V., Eliceiri,K., Tomancak,P., Cardona,A.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 (7), 676- 682 (2012)

[50]

Devos,S.L., Miller,T.M.: Direct intraventricular delivery of drugs to the rodent central nervous system. J. Vis. Exp. 12 (75), e50326 (2013)

[51]

Lederle,L., Weber,S., Wright,T., Feyder,M., Brigman,J., Crombag,H.S., Saksida,L.M., Holmes,A.: Reward-related behavioral paradigms for addiction research in the mouse: performance of common inbred strains. PLoS ONE 6 (1), e15536 (2011)

[52]

Shirokov,A., Zlatogosrkaya,D., Adushkina,V., Vodovosova,E., Kardashevskaya,K., Sultanov,R., Kasyanov,S., Blokhina,I., Terskov,A., Tzoy,M., Evsyukova,A., Dubrovsky,A., Tuzhilkin,M., Elezarova,I., Dmitrenko,A., Manzhaeva,M., Krupnova,V., Semiachkina-Glushkovskaia,A., Ilyukov,E., Myagkov,D., Tuktarov,D., Popov,S., Inozemzev,T., Navolokin,N., Fedosov,I., Semyachkina-Glushkovskaya,O.: Plasmalogens improves clearance of amyloid-beta from mouse brain and cognitive functions. Int. J. Mol. Sci. 25 (23), 12552 (2024)

[53]

Denman,D.J., Luviano,J.A., Ollerenshaw,D.R., Cross,S., Williams,D., Buice,M.A., Olsen,S.R., Reid,R.C.: Mouse color and wavelength-specific luminance contrast sensitivity are nonuniform across visual space. Elife 7, e31209 (2018)

[54]

Kastellakis,G., Poirazi,P.: Synaptic clustering and memory formation. Front. Mol. Neurosci. 12, 300 (2019)

[55]

Lee,C., Kaang,B.K.: Clustering of synaptic engram: functional and structural basis of memory. Neurobiol. Learn. Mem. 216, 107993 (2024)

[56]

Moghekar,A., Rao,S., Li,M., Ruben,D., Mammen,A., Tang,X., O’Brien,R.J.: Large quantities of Abeta peptide are constitutively released during amyloid precursor protein metabolism in vivo and in vitro. J. Biol. Chem. 286 (18), 15989- 15997 (2011)

[57]

Yin,K.J., Cirrito,J.R., Yan,P., Hu,X., Xiao,Q., Pan,X., Bateman,R., Song,H., Hsu,F.F., Turk,J., Xu,J., Hsu,C.Y., Mills,J.C., Holtzman,D.M., Lee,J.M.: Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J. Neurosci. 26 (43), 10939- 10948 (2006)

[58]

Healy,D., Murray,C., McAdams,C., Power,R., Hollier,P.L., Lambe,J., Tortorelli,L., Lopez-Rodriguez,A.B., Cunningham,C.: Susceptibility to acute cognitive dysfunction in aged mice is underpinned by reduced white matter integrity and microgliosis. Commun. Biol. 7 (1), 105 (2024)\

[59]

Daneshjoo,S., Park,J.Y., Moreno,J., Rosenfeld,M., Darvas,M., Ladiges,W.: A mouse model of naturally occurring agerelated cognitive impairment. Aging Pathobiol. Ther. 4 (3), 87- 89 (2022)

[60]

Godaert,L., DraméM.: Efficacy of photobiomodulation therapy in older adults: a systematic review. Biomedicines 12 (7), 1409 (2024)

[61]

Ahlemeyer,B., Halupczok,S., Rodenberg-Frank,E., Valerius,K., Baumgart-Vogt,E.: Endogenous murine amyloid-β peptide assembles into aggregates in the aged C57BL/6J mouse suggesting these animals as a model to study pathogenesis of amyloid-β plaque formation. J. Alzheimers Dis. 61 (4), 1425- 1450 (2018)

[62]

Stevens,D.A., Workman,C.I., Kuwabara,H., Butters,M.A., Savonenko,A., Nassery,N., Gould,N., Kraut,M., Joo,J.H., Kilgore,J., Kamath,V., Holt,D.P., Dannals,R.F., Nandi,A., Onyike,C.U., Smith,G.S.: Regional amyloid correlates of cognitive performance in ageing and mild cognitive impairment. Brain Commun. 4 (1), fcac016 (2022)

[63]

Hardy,J., Higgins,G.: Alzheimer’s disease: the amyloid cascade hypothesis. Science 256 (5054), 184- 185 (1992)

[64]

Stern,E.A., Bacskai,B.J., Hickey,G.A., Attenello,F.J., Lombardo,J.A., Hyman,B.T.: Cortical synaptic integration in vivo is disrupted by amyloid-plaques. J. Neurosci. 24 (19), 4535- 4540 (2004)

[65]

Bolmont,T., Haiss,F., Eicke,D., Radde,R., Mathis,C.A., Klunk,W.E., Kohsaka,S., Jucker,M., Calhoun,M.E.: Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J. Neurosci. 28 (16), 4283- 4292 (2008)

[66]

Arnold,S.E., Hyman,B.T., Flory,J., Damasio,A.R., Van Hoesen,G.W.: The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb. Cortex 1 (1), 103- 116 (1991)

[67]

Pike,K.E., Savage,G., Villemagne,V.L., Ng,S., Moss,S.A., Maruff,P., Mathis,C.A., Klunk,W.E., Masters,C.L., Rowe,C.C.: Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain 130 (11), 2837- 2844 (2007)

[68]

Villemagne,V.L., Pike,K.E., Chételat,G., Ellis,K.A., Mulligan,R.S., Bourgeat,P., Ackermann,U., Jones,G., Szoeke,C., Salvado,O., Martins,R., O’Keefe,G., Mathis,C.A., Klunk,W.E., Ames,D., Masters,C.L., Rowe,C.C.: Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann. Neurol. 69 (1), 181- 192 (2011)

[69]

Rowe,C.C., Ellis,K.A., Rimajova,M., Bourgeat,P., Pike,K.E., Jones,G., Fripp,J., Tochon-Danguy,H., Morandeau,L., O’Keefe,G., Price,R., Raniga,P., Robins,P., Acosta,O., Lenzo,N., Szoeke,C., Salvado,O., Head,R., Martins,R., Masters,C.L., Ames,D., Villemagne,V.L.: Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol. Aging 31 (8), 1275- 1283 (2010)

[70]

Villemagne,V.L., Burnham,S., Bourgeat,P., Brown,B., Ellis,K.A., Salvado,O., Szoeke,C., Macaulay,S.L., Martins,R., Maruff,P., Ames,D., Rowe,C.C., Masters,C.L.: Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 12 (4), 357- 367 (2013)

[71]

Avgerinos,K.I., Ferrucci,L., Kapogiannis,D.: Effects of monoclonal antibodies against amyloid-β on clinical and biomarker outcomes and adverse event risks: a systematic review and metaanalysis of phase III RCTs in Alzheimer’s disease. Ageing Res. Rev. 68, 101339 (2021)

[72]

Salloway,S., Chalkias,S., Barkhof,F., Burkett,P., Barakos,J., Purcell,D., Suhy,J., Forrestal,F., Tian,Y., Umans,K., Wang,G., Singhal,P., Budd Haeberlein,S., Smirnakis,K.: Amyloidrelated imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol. 79 (1), 13- 21 (2022)

[73]

Shirolapov,I., Zakharov,A., Smirnova,D., Khivintseva,E., Sergeeva,M.: Aging brain, dementia and impaired glymphatic pathway: causal relationships. Psychiatr. Danub. 35, 236- 244 (2023)

[74]

Blázquez-Castro,A.: Direct 1O2 optical excitation: a tool for redox biology. Redox Biol. 13, 39- 59 (2017)\

[75]

Semyachkina-Glushkovskaya,O., Fedosov,I., Penzel,T., Li,D., Yu,T., Telnova,V., Kaybeleva,E., Saranceva,E., Terskov,A., Khorovodov,A., Blokhina,I., Kurths,J., Zhu,D.: Brain waste removal system and sleep: photobiomodulation as an innovative strategy for night therapy of brain diseases. Int. J. Mol. Sci. 24 (4), 3221 (2023)

[76]

Xie,L., Kang,H., Xu,Q., Chen,M.J., Liao,Y., Thiyagarajan,M., O’Donnell,J., Christensen,D.J., Nicholson,C., Iliff,J., Takano,T., Deane,R., Nedergaard,M.: Sleep drives metabolite clearance from the adult brain. Science 342 (6156), 373- 377 (2013)

[77]

Fultz,N.E., Bonmassar,G., Setsompop,K., Stickgold,R., Rosen,B., Polimeni,J., Lewis,L.: Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366 (6465), 628- 631 (2019)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (3901KB)

398

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/