Vehicular Mini-LED backlight display inspection based on residual global context mechanism

Guobao Zhao, Xi Zheng, Xiao Huang, Yijun Lu, Zhong Chen, Weijie Guo

PDF(1839 KB)
PDF(1839 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (4) : 35. DOI: 10.1007/s12200-024-00140-4
RESEARCH ARTICLE

Vehicular Mini-LED backlight display inspection based on residual global context mechanism

Author information +
History +

Abstract

Mini-LED backlight has emerged as a promising technology for high performance LCDs, yet the massive detection of dead pixels and precise LEDs placement are constrained by the miniature scale of the Mini-LEDs. The high-resolution network (Hrnet) with mixed dilated convolution and dense upsampling convolution (MDC-DUC) module and a residual global context attention (RGCA) module has been proposed to detect the quality of vehicular Mini-LED backlights. The proposed model outperforms the baseline networks of Unet, Pspnet, Deeplabv3+, and Hrnet, with a mean intersection over union (Miou) of 86.91%. Furthermore, compared to the four baseline detection networks, our proposed model has a lower root-mean-square error (RMSE) when analyzing the position and defective count of Mini-LEDs in the prediction map by canny algorithm. This work incorporates deep learning to support production lines improve quality of Mini-LED backlights.

Graphical abstract

Keywords

Mini-LED / Automated optical inspection / Deep learning / Display

Cite this article

Download citation ▾
Guobao Zhao, Xi Zheng, Xiao Huang, Yijun Lu, Zhong Chen, Weijie Guo. Vehicular Mini-LED backlight display inspection based on residual global context mechanism. Front. Optoelectron., 2024, 17(4): 35 https://doi.org/10.1007/s12200-024-00140-4

References

[1]
Chen, E.G., Fan, Z.G., Zhang, K.X., Huang, C., Xu, S., Ye, Y., Sun, J., Yan, Q., Guo, T.: Broadband beam collimation metasurface for full-color micro-LED displays. Opt. Express 32(6), 10252–10264 (2024)
CrossRef Google scholar
[2]
Chen, E.G., Zhao, M.Y., Chen, K.K., Jin, H., Chen, X., Sun, J., Yan, Q., Guo, T.: Metamaterials for light extraction and shaping of micro-scale light-emitting diodes: from the perspective of onedimensional and two-dimensional photonic crystals. Opt. Express 31(11), 18210–18226 (2023)
CrossRef Google scholar
[3]
Bian, Y.X., Liu, Q.L., Zhang, Z.F., Liu, D., Hussian, A., Kuang, C., Li, H., Liu, X.: Portable multi-spectral lens-less microscope with wavelength-self-calibrating imaging sensor. Opt. Lasers Eng. 111, 25–33 (2018)
CrossRef Google scholar
[4]
Huang, Y.G., Hsiang, E.L., Deng, M.Y., Wu, S.T.: Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl. 9(1), 105 (2020)
CrossRef Google scholar
[5]
Hu, X., Cai, J., Liu, Y., Zhao, M., Chen, E., Sun, J., Yan, Q., Guo, T.: Design of inclined omni-directional reflector for side-wall-emission-free micro-scale light-emitting diodes. Opt. Laser Technol. 154, 108335 (2022)
CrossRef Google scholar
[6]
Hsiang, E., Yang, Z., Yang, Q., Lan, Y.F., Wu, S.T.: Prospects and challenges of Mini-LED, OLED, and Micro-LED displays. J. Soc. Inf. Disp. 29(6), 446–465 (2021)
CrossRef Google scholar
[7]
Zhou, S.J., Liao, Z.F., Sun, K., Zhang, Z., Qian, Y., Liu, P., Du, P., Jiang, J., Lv, Z., Qi, S.: High-power AlGaN-based ultrathin tunneling junction deep ultraviolet light-emitting diodes. Laser Photonics Rev. 18(1), 2300464 (2024)
CrossRef Google scholar
[8]
Fan, B.J., Zhao, X.Y., Zhang, J.Q., Sun, Y., Yang, H., Guo, L.J., Zhou, S.: Monolithically integrating III-nitride quantum structure for full-spectrum white LED via bandgap engineering heteroepitaxial growth. Laser Photonics Rev. 17(3), 2200455 (2023)
CrossRef Google scholar
[9]
Akimoto, H., Yamamoto, A., Washio, H., Nakano, T.: Design and process of 2D backlight beyond HDR 5000 nits. SID Symposium Digest of Technical Papers, 52(2), 628–631 (2021)
CrossRef Google scholar
[10]
Yang, Z.Y., Hsiang, E.L., Qian, Y.Z., Wu, S.T.: Performance comparison between Mini-LED backlit LCD and OLED display for 156-inch notebook computers. Appl. Sci. 12, 1239 (2022)
CrossRef Google scholar
[11]
Tan, G.J., Huang, Y.G., Li, M.C., Lee, S.L., Wu, S.T.: High dynamic range liquid crystal displays with a mini-LED backlight. Opt. Express 26(13), 16572–16584 (2018)
CrossRef Google scholar
[12]
Du, Y.C., Chen, J.P., Zhou, H., Yang, X., Wang, Z., Zhang, J., Shi, Y., Chen, X., Zheng, X.: An automated optical inspection (AOI) platform for three-dimensional (3D) defects detection on glass micro-optical components (GMOC). Opt. Commun. 545, 129736 (2023)
CrossRef Google scholar
[13]
Liu, H.X., Zhou, W., Kuang, Q.W., Cao, L., Gao, B.: Defect detection of IC wafer based on two-dimension wavelet transform. Microelectronics J. 41(2–3), 171–177 (2010)
CrossRef Google scholar
[14]
Tsai, D., Lin, P.C., Lu, C.: An independent component analysis-based filter design for defect detection in low-contrast surface images. Pattern Recognit. 39(9), 1679–1694 (2006)
CrossRef Google scholar
[15]
Huang, S.H., Pan, Y.C.: Automated visual inspection in the semiconductor industry: a survey. Comput. Ind. 66, 1–10 (2015)
CrossRef Google scholar
[16]
Nam, G., Lee, H., Oh, S., Kim, M.H.: Measuring color defects in flat panel displays using HDR imaging and appearance modeling. IEEE Trans. Instrum. Meas. 65(2), 297–304 (2016)
CrossRef Google scholar
[17]
Chen, M.Y., Han, S.X., Li, C.: Efficient Micro-LED defect detection based on microscopic vision and deep learning. Opt. Lasers Eng. 177, 108116 (2024)
CrossRef Google scholar
[18]
Yang, H., Mei, S., Song, K., Tao, B., Yin, Z.: Transfer-learningbased online Mura defect classification. IEEE Trans. Semicond. Manuf. 31(1), 116–123 (2018)
CrossRef Google scholar
[19]
Park, Y., Kweon, I.S.: Ambiguous surface defect image classification of AMOLED displays in smartphones. IEEE Trans. Industr. Inform. 12(2), 597–607 (2016)
CrossRef Google scholar
[20]
Li, Z., Hou, Q., Wang, Z., Tan, F., Liu, J., Zhang, W.: End-to-end learned single lens design using fast differentiable ray tracing. Opt. Lett. 46(21), 5453–5456 (2021)
CrossRef Google scholar
[21]
Fu, Y., Fan, J., Xing, S., Wang, Z., Jing, F., Tan, M.: Image segmentation of cabin assembly scene based on improved RGB-D mask R-CNN. IEEE Trans. Instrum. Meas. 71, 1–12 (2022)
CrossRef Google scholar
[22]
Xu, G., Cheng, C., Yang, W., Xie, W., Kong, L., Hang, R., Ma, F., Dong, C., Yang, J.: Oceanic eddy identification using an AI scheme. Remote Sens. (Basel) 11(11), 1349 (2019)
CrossRef Google scholar
[23]
Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3349–3364 (2021)
CrossRef Google scholar
[24]
Akcay, O., Kinaci, A.C., Avsar, E.O., Aydar, U.: Semantic segmentation of high-resolution airborne images with dual-stream DeepLabV3+. ISPRS Int. J. Geoinf. 11(1), 23 (2021)
CrossRef Google scholar
[25]
Li, Y., Lu, G., Li, J., Zhang, Z., Zhang, D.: Facial expression recognition in the wild using multi-level features and attention mechanisms. IEEE Trans. Affect. Comput. 14(1), 451–462 (2023)
CrossRef Google scholar
[26]
Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: Global context networks. IEEE Trans. Pattern Anal. Mach. Intell. 45(6), 6881–6895 (2023)
CrossRef Google scholar
[27]
Tang, A., Jiang, Y., Yu, Q., Zhang, Z.: A hybrid neural network model with attention mechanism for state of health estimation of lithium-ion batteries. J. Energy Storage 68, 107734 (2023)
CrossRef Google scholar
[28]
Zhang, R., Zhu, F., Liu, J.Y., Liu, G.: Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-based steganalysis. IEEE Trans. Inf. Forensics Security 15, 1138–1150 (2020)
CrossRef Google scholar
[29]
Tian, C., Xu, Y., Li, Z., Zuo, W., Fei, L., Liu, H.: Attention-guided CNN for image denoising. Neural Netw. 124, 117–129 (2020)
CrossRef Google scholar
[30]
Li, D., Gong, S., Niu, S., Wang, Z., Zhou, D., Lu, H.: Image blind denoising using a generative adversarial network for LED chip visual localization. IEEE Sens. J. 20(12), 6582–6595 (2020)
CrossRef Google scholar
[31]
Wang, Z., Gong, S., Li, D., Lu, H.: Error analysis and improved calibration algorithm for LED chip localization system based on visual feedback. Int. J. Adv. Manuf. Technol. 92(9–12), 3197–3206 (2017)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(1839 KB)

Accesses

Citations

Detail

Sections
Recommended

/