Quantitative modeling of perovskite-based direct X-ray flat panel detectors

Zihao Song, Gaozhu Wang, Jincong Pang, Zhiping Zheng, Ling Xu, Ying Zhou, Guangda Niu, Jiang Tang

PDF(1542 KB)
PDF(1542 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (4) : 32. DOI: 10.1007/s12200-024-00136-0
LETTER

Quantitative modeling of perovskite-based direct X-ray flat panel detectors

Author information +
History +

Abstract

Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of 103 µCGy-1·cm-2. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 µCGy-1air·cm-2, the requirements on dark current density ranges from 10 to 100 nA·cm-2 and the fluctuation of current density should fall in 0.21 to 1.37 nA·cm-2.

Graphical abstract

Keywords

DQE / X-ray / Detector / Perovskite

Cite this article

Download citation ▾
Zihao Song, Gaozhu Wang, Jincong Pang, Zhiping Zheng, Ling Xu, Ying Zhou, Guangda Niu, Jiang Tang. Quantitative modeling of perovskite-based direct X-ray flat panel detectors. Front. Optoelectron., 2024, 17(4): 32 https://doi.org/10.1007/s12200-024-00136-0

References

[1]
Kim, Y.C., Kim, K.H., Son, D.Y., Jeong, D.N., Seo, J.Y., Choi, Y.S., Han, I.T., Lee, S.Y., Park, N.G.: Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550(7674), 87–91 (2017)
CrossRef Google scholar
[2]
Medical electrical equipment – characteristics of digital X-ray imaging devices – part 1: Determination of the detective quantum efficiency. (2003)
[3]
Konstantinidis, A.C., Szafraniec, M.B., Speller, R.D., Olivo, A.: The Dexela 2923 CMOS X-ray detector: a flat panel detector based on CMOS active pixel sensors for medical imaging applications. Nucl. Instrum. Methods Res. A. 689, 12–21 (2012)
CrossRef Google scholar
[4]
Deumel, S., van Breemen, A., Gelinck, G., Peeters, B., Maas, J., Verbeek, R., Shanmugam, S., Akkerman, H., Meulenkamp, E., Huerdler, J.E., Acharya, M., García-Batlle, M., Almora, O., Guerrero, A., Garcia-Belmonte, G., Heiss, W., Schmidt, O., Tedde, S.F.: High-sensitivity high-resolution X-ray imaging with softsintered metal halide perovskites. Nat. Electron. 4(9), 681–688 (2021)
CrossRef Google scholar
[5]
Kasap, S.O., Koughia, K.V., Fogal, B., Belev, G., Johanson, R.E.: The influence of deposition conditions and alloying on the electronic properties of amorphous selenium. Semiconductors 37(7), 789–794 (2003)
CrossRef Google scholar
[6]
Greiffenberg, D., Fauler, A., Zwerger, A., Fiederle, M.: Energy resolution and transport properties of CdTe-timepix-assemblies. J. Instrum.Instrum. 6(1), 01058(2011)
CrossRef Google scholar
[7]
Pang, J., Zhao, S., Du, X., Wu, H., Niu, G., Tang, J.: Vertical matrix perovskite X-ray detector for effective multi-energy discrimination. Light Sci. Appl. 11(1), 105(2022)
CrossRef Google scholar
[8]
Pang, J., Wu, H., Li, H., Jin, T., Tang, J., Niu, G.: Reconfigurable perovskite X-ray detector for intelligent imaging. Nat. Commun. Commun. 15(1), 1769(2024)
CrossRef Google scholar
[9]
He, Y., Hadar, I., Kanatzidis, M.G.: Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photonics 16(1), 14–26 (2022)
CrossRef Google scholar
[10]
Liu, Y., Zhang, Y., Zhu, X., Feng, J., Spanopoulos, I., Ke, W., He, Y., Ren, X., Yang, Z., Xiao, F., Zhao, K., Kanatzidis, M., Liu, S.F.: Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater. 33(8), 2006010(2021)
CrossRef Google scholar
[11]
Jin, P., Tang, Y., Li, D., Wang, Y., Ran, P., Zhou, C., Yuan, Y., Zhu, W., Liu, T., Liang, K., Kuang, C., Liu, X., Zhu, B., Yang, Y.M.: Realizing nearly- zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by darkcurrent- shunting strategy. Nat. Commun.Commun. 14(1), 626(2023)
CrossRef Google scholar
[12]
Song, Z., Du, X., He, X., Wang, H., Liu, Z., Wu, H., Luo, H., Jin, L., Xu, L., Zheng, Z., Niu, G., Tang, J.: Rheological engineering of perovskite suspension toward high-resolution X-ray flat-panel detector. Nat. Commun.Commun. 14(1), 6865(2023)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(1542 KB)

Accesses

Citations

Detail

Sections
Recommended

/