Quantitative modeling of perovskite-based direct X-ray flat panel detectors
Zihao Song, Gaozhu Wang, Jincong Pang, Zhiping Zheng, Ling Xu, Ying Zhou, Guangda Niu, Jiang Tang
Quantitative modeling of perovskite-based direct X-ray flat panel detectors
Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of 103 µCGy-1·cm-2. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 µCGy-1air·cm-2, the requirements on dark current density ranges from 10 to 100 nA·cm-2 and the fluctuation of current density should fall in 0.21 to 1.37 nA·cm-2.
DQE / X-ray / Detector / Perovskite
[1] |
Kim, Y.C., Kim, K.H., Son, D.Y., Jeong, D.N., Seo, J.Y., Choi, Y.S., Han, I.T., Lee, S.Y., Park, N.G.: Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550(7674), 87–91 (2017)
CrossRef
Google scholar
|
[2] |
Medical electrical equipment – characteristics of digital X-ray imaging devices – part 1: Determination of the detective quantum efficiency. (2003)
|
[3] |
Konstantinidis, A.C., Szafraniec, M.B., Speller, R.D., Olivo, A.: The Dexela 2923 CMOS X-ray detector: a flat panel detector based on CMOS active pixel sensors for medical imaging applications. Nucl. Instrum. Methods Res. A. 689, 12–21 (2012)
CrossRef
Google scholar
|
[4] |
Deumel, S., van Breemen, A., Gelinck, G., Peeters, B., Maas, J., Verbeek, R., Shanmugam, S., Akkerman, H., Meulenkamp, E., Huerdler, J.E., Acharya, M., García-Batlle, M., Almora, O., Guerrero, A., Garcia-Belmonte, G., Heiss, W., Schmidt, O., Tedde, S.F.: High-sensitivity high-resolution X-ray imaging with softsintered metal halide perovskites. Nat. Electron. 4(9), 681–688 (2021)
CrossRef
Google scholar
|
[5] |
Kasap, S.O., Koughia, K.V., Fogal, B., Belev, G., Johanson, R.E.: The influence of deposition conditions and alloying on the electronic properties of amorphous selenium. Semiconductors 37(7), 789–794 (2003)
CrossRef
Google scholar
|
[6] |
Greiffenberg, D., Fauler, A., Zwerger, A., Fiederle, M.: Energy resolution and transport properties of CdTe-timepix-assemblies. J. Instrum.Instrum. 6(1), 01058(2011)
CrossRef
Google scholar
|
[7] |
Pang, J., Zhao, S., Du, X., Wu, H., Niu, G., Tang, J.: Vertical matrix perovskite X-ray detector for effective multi-energy discrimination. Light Sci. Appl. 11(1), 105(2022)
CrossRef
Google scholar
|
[8] |
Pang, J., Wu, H., Li, H., Jin, T., Tang, J., Niu, G.: Reconfigurable perovskite X-ray detector for intelligent imaging. Nat. Commun. Commun. 15(1), 1769(2024)
CrossRef
Google scholar
|
[9] |
He, Y., Hadar, I., Kanatzidis, M.G.: Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photonics 16(1), 14–26 (2022)
CrossRef
Google scholar
|
[10] |
Liu, Y., Zhang, Y., Zhu, X., Feng, J., Spanopoulos, I., Ke, W., He, Y., Ren, X., Yang, Z., Xiao, F., Zhao, K., Kanatzidis, M., Liu, S.F.: Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater. 33(8), 2006010(2021)
CrossRef
Google scholar
|
[11] |
Jin, P., Tang, Y., Li, D., Wang, Y., Ran, P., Zhou, C., Yuan, Y., Zhu, W., Liu, T., Liang, K., Kuang, C., Liu, X., Zhu, B., Yang, Y.M.: Realizing nearly- zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by darkcurrent- shunting strategy. Nat. Commun.Commun. 14(1), 626(2023)
CrossRef
Google scholar
|
[12] |
Song, Z., Du, X., He, X., Wang, H., Liu, Z., Wu, H., Luo, H., Jin, L., Xu, L., Zheng, Z., Niu, G., Tang, J.: Rheological engineering of perovskite suspension toward high-resolution X-ray flat-panel detector. Nat. Commun.Commun. 14(1), 6865(2023)
CrossRef
Google scholar
|
/
〈 | 〉 |