Efficient soluble PTCBI-type non-fullerene acceptor materials for organic solar cells

Xiang Gao, Fengbo Sun, Xinzhu Tong, Xufan Zheng, Yinuo Wang, Cong Xiao, Pengcheng Li, Renqiang Yang, Xunchang Wang, Zhitian Liu

PDF(2566 KB)
PDF(2566 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (2) : 8. DOI: 10.1007/s12200-023-00063-6
RESEARCH ARTICLE

Efficient soluble PTCBI-type non-fullerene acceptor materials for organic solar cells

Author information +
History +

Abstract

Single perylene diimide (PDI) used as a non-fullerene acceptor (NFA) in organic solar cells (OSCs) is enticing because of its low cost and excellent stability. To improve the photovoltaic performance, it is vital to narrow the bandgap and regulate the stacking behavior. To address this challenge, we synthesize soluble perylenetetracarboxylic bisbenzimidazole (PTCBI) molecules with a bulky side chain at the bay region, by replacing the widely used “swallow tail” type alkyl chains at the imide position of PDI molecules with a planar benzimidazole structure. Compared with PDI molecules, PTCBI molecules exhibit red-shifted UV–vis absorption spectra with larger extinction coefficient, and one magnitude higher electron mobility. Finally, OSCs based on one soluble PTCBI-type NFA, namely MAS-7, exhibit a champion power conversion efficiency (PCE) of 4.34%, which is significantly higher than that of the corresponding PDI-based OSCs and is the highest PCE of PTCBI-based OSCs reported. These results highlight the potential of soluble PTCBI derivatives as NFAs in OSCs.

Graphical abstract

Keywords

Non-fullerene acceptor / Soluble PTCBI / Organic solar cells

Cite this article

Download citation ▾
Xiang Gao, Fengbo Sun, Xinzhu Tong, Xufan Zheng, Yinuo Wang, Cong Xiao, Pengcheng Li, Renqiang Yang, Xunchang Wang, Zhitian Liu. Efficient soluble PTCBI-type non-fullerene acceptor materials for organic solar cells. Front. Optoelectron., 2023, 16(2): 8 https://doi.org/10.1007/s12200-023-00063-6

References

[1]
Zhang, G. , Lin, F.R. , Qi, F. , Heumüller, T. , Distler, A. , Egelhaaf, H.J. , Li, N. , Chow, P.C.Y. , Brabec, C.J. , Jen, A.K. , Yip, H.L. : Renewed prospects for organic photovoltaics. Chem. Rev. 122 (18), 14180- 14274 (2022)
[2]
Liu, Q. , Jiang, Y. , Jin, K. , Qin, J. , Xu, J. , Li, W. , Xiong, J. , Liu, J. , Xiao, Z. , Sun, K. , Yang, S. , Zhang, X. , Ding, L. : 18% Efficiency organic solar cells. Sci. Bull. (Beijing) 65 (4), 272- 275 (2020)
[3]
Lin, Y. , Firdaus, Y. , Isikgor, F.H. , Nugraha, M.I. , Yengel, E. , Harrison, G.T. , Hallani, R. , El-Labban, A. , Faber, H. , Ma, C. , Zheng, X. , Subbiah, A. , Howells, C.T. , Bakr, O.M. , McCulloch, I. , Wolf, S.D. , Tsetseris, L. , Anthopoulos, T.D. : Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 5 (9), 2935- 2944 (2020)
[4]
Zhao, W. , Qian, D. , Zhang, S. , Li, S. , Inganäs, O. , Gao, F. , Hou, J. : Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 28 (23), 4734- 4739 (2016)
[5]
Liu, J. , Chen, S. , Qian, D. , Gautam, B. , Yang, G. , Zhao, J. , Bergqvist, J. , Zhang, F. , Ma, W. , Ade, H. , Inganäs, O. , Gundogdu, K. , Gao, F. , Yan, H. : Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1 (7), 16089 (2016)
[6]
Bin, H. , Zhang, Z.G. , Gao, L. , Chen, S. , Zhong, L. , Xue, L. , Yang, C. , Li, Y. : Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9. 5% efficiency. J. Am. Chem. Soc. 138 (13), 4657- 4664 (2016)
[7]
Lin, Y. , Wang, J. , Zhang, Z.G. , Bai, H. , Li, Y. , Zhu, D. , Zhan, X. : An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27 (7), 1170- 1174 (2015)
[8]
Gao, J. , Zhu, X. , Bao, H. , Feng, J. , Gao, X. , Liu, Z. , Ge, Z. : Latest progress on fully non-fused electron acceptors for high-performance organic solar cells. Chin. Chem. Lett. (2022) https://doi.org/10.1016/j.cclet.2022.107968
[9]
Hou, X. , Sang, S. , Pan, J. , Xue, Z. , Wu, B. , Qiao, F. , Xie, L. , Zhao, B. , Chen, F. , Zhang, J. , Chen, Z. : Nonplanar perylene diimide-based small molecule and its polymer as electron acceptors. ACS Appl. Polym. Mater. 2 (7), 2749- 2755 (2020)
[10]
Yang, J. , Xiao, B. , Tang, A. , Li, J. , Wang, X. , Zhou, E. : Aromatic-diimide-based n-type conjugated polymers for all-polymer solar cell applications. Adv. Mater. 31 (45), e1804699 (2019)
[11]
Zhang, Y. , Ji, Y. , Zhang, Y. , Zhang, W. , Bai, H. , Du, M. , Wu, H. , Guo, Q. , Zhou, E. : Recent progress of Y6-derived asymmetric fused ring electron acceptors. Adv. Funct. Mater. 32 (35), 2205115 (2022)
[12]
Gao, X. , Ma, X. , Liu, Z. , Gao, J. , Qi, Q. , Yu, Y. , Gao, Y. , Ma, Z. , Ye, L. , Min, J. , Wen, J. , Gao, J. , Zhang, F. , Liu, Z. : Novel third components with (thio)barbituric acid as the end groups improving the efficiency of ternary solar cells. ACS Appl. Mater. Interfaces 14 (20), 23701- 23708 (2022)
[13]
Li, J.N. , Cui, M. , Dong, J. , Jing, W. , Bao, J. , Liu, Z. , Ma, Z. , Gao, X. : Voltage loss analysis of novel non-fullerene acceptors with chlorinated non-conjugated thienyl chains. Dyes Pigments 188, 109162 (2021)
[14]
Li, C. , Zhou, J. , Song, J. , Xu, J. , Zhang, H. , Zhang, X. , Guo, J. , Zhu, L. , Wei, D. , Han, G. , Min, J. , Zhang, Y. , Xie, Z. , Yi, Y. , Yan, H. , Gao, F. , Liu, F. , Sun, Y. : Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6 (6), 605- 613 (2021)
[15]
Li, S. , Li, C.Z. , Shi, M. , Chen, H. : New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett. 5 (5), 1554- 1567 (2020)
[16]
Liu, Z. , Zhang, X. , Li, P. , Gao, X. : Recent development of efficient A-D-A type fused-ring electron acceptors for organic solar. Sol. Energy 174, 171- 188 (2018)
[17]
Wadsworth, A. , Moser, M. , Marks, A. , Little, M.S. , Gasparini, N. , Brabec, C.J. , Baran, D. , McCulloch, I. : Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 48 (6), 1596- 1625 (2019)
[18]
Li, G. , Yang, W. , Wang, S. , Liu, T. , Yan, C. , Li, G. , Zhang, Y. , Li, D. , Wang, X. , Hao, P. , Li, J. , Huo, L. , Yan, H. , Tang, B. : Methane-perylene diimide-based small molecule acceptors for high efficiency non-fullerene organic solar cells. J. Mater. Chem. C Mater. Opt. Electron. Devices 7 (35), 10901- 10907 (2019)
[19]
Chen, L. , Li, C. , Müllen, K. : Beyond perylene diimides: synthesis, assembly and function of higher rylene chromophores. J. Mater. Chem. C Mater. Opt. Electron. Devices 2 (11), 1938- 1956 (2014)
[20]
Gao, X. , Jing, W. , Wang, Y. , Xu, X. , Zhang, L. , Chen, Z. , Wen, J. , Gao, Z. , Peng, Q. , Liu, Z. : Efficient perylene-diimides-based nonfullerene acceptors with triazine cores synthesized via a simple nucleophilic substitution reaction. Sci. China Mater. (2023) https://doi.org/10.1007/s40843-022-2339-9
[21]
Zhang, L. , Chen, Z. , Sun, F. , Wang, Y. , Bao, H. , Gao, X. , Liu, Z. : Progress of monomeric perylene diimide derivatives as nonfullerene acceptors for organic solar cells. J. Electron. Mater. 51 (8), 4224- 4237 (2022)
[22]
Liu, Z. , Zeng, D. , Gao, X. , Li, P. , Zhang, Q. , Peng, X. : Non-fullerene polymer acceptors based on perylene diimides in all-polymer solar cells. Sol. Energy Mater. Sol. Cells 189, 103- 117 (2019)
[23]
Liu, Z. , Wu, Y. , Zhang, Q. , Gao, X. : Non-fullerene small molecule acceptors based on perylene diimides. J. Mater. Chem. A Mater. Energy Sustain. 4 (45), 17604- 17622 (2016)
[24]
Yu, H. , Arunagiri, L. , Zhang, L. , Huang, J. , Ma, W. , Zhang, J. , Yan, H. : Transannularly conjugated tetrameric perylene diimide acceptors containing [2 2]paracyclophane for non-fullerene organic solar cells. J. Mater. Chem. A Mater. Energy Sustain. 8 (14), 6501- 6509 (2020)
[25]
Wang, K. , Xia, P. , Wang, K. , You, X. , Wu, M. , Huang, H. , Wu, D. , Xia, J. : π-extension, selenium incorporation, and trimerization: “Three in One” for efficient perylene diimide oligomer-based organic solar cells. ACS Appl. Mater. Interfaces 12 (8), 9528- 9536 (2020)
[26]
Liu, W. , Zhang, C. , Liu, J. , Bo, Z. : PDI-based hexapod-shaped nonfullerene acceptors for the high-performance As-cast organic solar cells. ACS Appl. Mater. Interfaces 12 (33), 37409- 37417 (2020)
[27]
Li, Y. , Gong, Y. , Che, Y. , Xu, X. , Yu, L. , Peng, Q. : Propeller-like all-fused perylene diimide based electron acceptors with chalcogen linkage for efficient polymer solar cells. Front. Chem. 8, 350 (2020)
[28]
Hu, J. , Liu, X. , Wang, K. , Wu, M. , Huang, H. , Wu, D. , Xia, J. : A perylene diimide electron acceptor with a triphenylamine core: promoting photovoltaic performance via hot spin-coating. J. Mater. Chem. C Mater. Opt. Electron. Devices 8 (6), 2135- 2141 (2020)
[29]
Ding, K. , Wang, Y. , Shan, T. , Xu, J. , Bao, Q. , Liu, F. , Zhong, H. : Propeller-like acceptors with difluoride perylene diimides for organic solar cells. Org. Electron. 78, 105569 (2020)
[30]
Lin, Y.C. , Chen, C.H. , She, N.Z. , Juan, C.Y. , Chang, B. , Li, M.H. , Wang, H.C. , Cheng, H.W. , Yabushita, A. , Yang, Y. , Wei, K.H. : Twisted-graphene-like perylene diimide with dangling functional chromophores as tunable small-molecule acceptors in binary-blend active layers of organic photovoltaics. J. Mater. Chem. A Mater. Energy Sustain. 9 (36), 20510- 20517 (2021)
[31]
Chen, S. , Meng, D. , Huang, J. , Liang, N. , Li, Y. , Liu, F. , Yan, H. , Wang, Z. : Symmetry-induced orderly assembly achieving high-performance perylene diimide-based nonfullerene organic solar cells. CCS Chem. 3, 78- 84 (2021)
[32]
Ding, K. , Shan, T. , Xu, J. , Li, M. , Wang, Y. , Zhang, Y. , Xie, Z. , Ma, Z. , Liu, F. , Zhong, H. : A perylene diimide-containing acceptor enables high fill factor in organic solar cells. Chem. Commun. (Camb.) 56 (77), 11433- 11436 (2020)
[33]
Zhang, G. , Feng, J. , Xu, X. , Ma, W. , Li, Y. , Peng, Q. : Perylene diimide-based nonfullerene polymer solar cells with over 11% efficiency fabricated by smart molecular design and supramolecular morphology optimization. Adv. Funct. Mater. 29 (50), 1906587 (2019)
[34]
Singh, R. , Kim, M. , Lee, J.J. , Ye, T. , Keivanidis, P.E. , Cho, K. : Excimer formation effects and trap-assisted charge recombination loss channels in organic solar cells of perylene diimide dimer acceptors. J. Mater. Chem. C Mater. Opt. Electron. Devices 8 (5), 1686- 1696 (2020)
[35]
Nazari, M. , Cieplechowicz, E. , Welsh, T.A. , Welch, G.C. : A direct comparison of monomeric vs dimeric and non-annulated vs N-annulated perylene diimide electron acceptors for organic photovoltaics. New J. Chem. 43 (13), 5187- 5195 (2019)
[36]
Aluicio-Sarduy, E. , Singh, R. , Kan, Z. , Ye, T. , Baidak, A. , Calloni, A. , Berti, G. , Duò, L. , Iosifidis, A. , Beaupré, S. , Leclerc, M. , Butt, H.J. , Floudas, G. , Keivanidis, P.E. : Elucidating the impact of molecular packing and device architecture on the performance of nanostructured perylene diimide solar cells. ACS Appl. Mater. Interfaces 7 (16), 8687- 8698 (2015)
[37]
Dittmer, J.J. , Marseglia, E.A. , Friend, R.H. : Electron trapping in dye/polymer blend photovoltaic cells. Adv. Mater. 12 (17), 1270- 1274 (2000)
[38]
Pettipas, R.D. , Radford, C.L. , Kelly, T.L. : Regioisomerically pure 1,7-dicyanoperylene diimide dimer for charge extraction from donors with high electron affinities. ACS Omega 5 (27), 16547- 16555 (2020)
[39]
Fujimoto, K. , Izawa, S. , Arikai, Y. , Sugimoto, S. , Oue, H. , Inuzuka, T. , Uemura, N. , Sakamoto, M. , Hiramoto, M. , Takahashi, M. : Regioselective bay-functionalization of perylenes toward tailor-made synthesis of acceptor materials for organic photovoltaics. ChemPlusChem 85 (2), 285- 293 (2020)
[40]
Yin, H. , Chen, S. , Bi, P. , Xu, X. , Cheung, S.H. , Hao, X. , Peng, Q. , Zhu, X. , So, S.K. : Rationalizing device performance of perylenediimide derivatives as acceptors for bulk-heterojunction organic solar cells. Org. Electron. 65, 156- 161 (2019)
[41]
Wang, H. , Fan, Q. , Chen, L. , Xiao, Y. : Amino-acid ester derived perylene diimides electron acceptor materials: an efficient strategy for green-solvent-processed organic solar cells. Dyes Pigments 164, 384- 389 (2019)
[42]
Singh, R. , Lee, J. , Kim, M. , Keivanidis, P.E. , Cho, K. : Control of the molecular geometry and nanoscale morphology in perylene diimide based bulk heterojunctions enables an efficient non-fullerene organic solar cell. J. Mater. Chem. A Mater. Energy Sustain. 5 (1), 210- 220 (2017)
[43]
Gao, G. , Liang, N. , Geng, H. , Jiang, W. , Fu, H. , Feng, J. , Hou, J. , Feng, X. , Wang, Z. : Spiro-fused perylene diimide arrays. J. Am. Chem. Soc. 139 (44), 15914- 15920 (2017)
[44]
Tang, C.W. : Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48 (2), 183- 185 (1986)
[45]
Marczyński, R. , Szostak, J. , Signerski, R. , Jarosz, G. : Photovoltaic effect in the single-junction DBP/PTCBI organic system under low intensity of monochromatic light. Curr. Appl. Phys. 19 (11), 1271- 1275 (2019)
[46]
Zhao, T. , Zhang, G. , Xing, Y. : Improved performance of small molecule solar cell by using oblique deposition technique and zinc phthalocyanine cathode buffer layer. RSC Adv. 8 (20), 10999- 11005 (2018)
[47]
Perrin, L. , Hudhomme, P. : Synthesis, electrochemical and optical absorption properties of new perylene-3,4:9,10-bis(dicarboximide) and perylene-3,4:9,10-bis(benzimidazole) derivatives. Eur. J. Org. Chem. 2011 (28), 5427- 5440 (2011)
[48]
Kim, I. , Haverinen, H.M. , Wang, Z. , Madakuni, S. , Kim, Y. , Li, J. , Jabbour, G.E. : Efficient organic solar cells based on planar metallophthalocyanines. Chem. Mater. 21 (18), 4256- 4260 (2009)
[49]
Dhagat, P. , Haverinen, H.M. , Kline, R.J. , Jung, Y. , Fischer, D.A. , DeLongchamp, D.M. , Jabbour, G.E. : Influence of dielectric surface chemistry on the microstructure and carrier mobility of an n-type organic semiconductor. Adv. Funct. Mater. 19 (15), 2365- 2372 (2009)
[50]
Zhao, B. , Wang, W. , Xin, J. , Wu, H. , Liu, H. , Guo, Z. , Cong, Z. , Ma, W. , Gao, C. : Absorptive behaviors and photovoltaic performance enhancements of alkoxy-phenyl modified indacenodithieno[3,2-b]thiophene-based nonfullerene acceptors. ACS Sustain. Chem. Eng. 6 (2), 2177- 2187 (2018)
[51]
Ke, X. , Meng, L. , Wan, X. , Cai, Y. , Gao, H.H. , Yi, Y.Q.Q. , Guo, Z. , Zhang, H. , Li, C. , Chen, Y. : A nonfullerene acceptor incorporating a dithienopyran fused backbone for organic solar cells with efficiency over 14%. Nano Energy 75, 104988 (2020)
[52]
Zhang, L. , Xia, Z. , Wen, J. , Gao, J. , Gao, X. , Liu, Z. : Fluorinated perylene diimide dimer for organic solar cells as non-fullerene acceptor. Asian J. Org. Chem. 10 (12), 3374- 3379 (2021)
[53]
Xu, K. , Hu, J. , Lu, K. , Wu, M. , Lu, H. , Yi, J. , Wu, D. , Xia, J. : Tetraphenylethylene vs triphenylethylene core-based perylene diimide acceptor for non-fullerene organic solar cells. Dyes Pigments 184, 108813 (2021)
[54]
Liang, N. , Meng, D. , Wang, Z. : Giant rylene imide-based electron acceptors for organic photovoltaics. Acc. Chem. Res. 54 (4), 961- 975 (2021)
[55]
Fujimoto, K. , Takahashi, M. , Izawa, S. , Hiramoto, M. : Development of perylene-based non-fullerene acceptors through bay-functionalization strategy. Materials (Basel) 13 (9), 2148 (2020)
[56]
Liu, Z. , Zhang, L. , Shao, M. , Wu, Y. , Zeng, D. , Cai, X. , Duan, J. , Zhang, X. , Gao, X. : Fine-tuning the quasi-3D geometry: enabling efficient nonfullerene organic solar cells based on perylene diimides. ACS Appl. Mater. Interfaces 10 (1), 762- 768 (2018)
[57]
Woo, H.Y. , Liu, B. , Kohler, B. , Korystov, D. , Mikhailovsky, A. , Bazan, G.C. : Solvent effects on the two-photon absorption of distyrylbenzene chromophores. J. Am. Chem. Soc. 127 (42), 14721- 14729 (2005)
[58]
Chen, H.Y. , Hou, J. , Zhang, S. , Liang, Y. , Yang, G. , Yang, Y. , Yu, L. , Wu, Y. , Li, G. : Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photon. 3 (11), 649- 653 (2009)
[59]
Gao, X. , Yu, K. , Zhao, Y. , Zhang, T. , Wen, J. , Liu, Z. , Liu, Z. , Ye, G. , Gao, J. , Ge, Z. , Liu, Z. : Effects of subtle change in side chains on the photovoltaic performance of small molecular donors for solar cells. Chin. Chem. Lett. 33 (10), 4659- 4663 (2022)
[60]
Bao, H.Y. , Yang, Z.F. , Zhao, Y.J. , Gao, X. , Tong, X.Z. , Wang, Y.N. , Sun, F.B. , Gao, J.H. , Li, W.W. , Liu, Z.T. : Chlorinated effects of double-cable conjugated polymers on the photovoltaic performance in single-component organic solar cells. Chin. J. Polym. Sci. 41 (2), 187- 193 (2023)
[61]
Liu, Z. , Gao, Y. , Dong, J. , Yang, M. , Liu, M. , Zhang, Y. , Wen, J. , Ma, H. , Gao, X. , Chen, W. , Shao, M. : Chlorinated wide-bandgap donor polymer enabling annealing free nonfullerene solar cells with the efficiency of 115. J. Phys. Chem. Lett. 9 (24), 6955- 6962 (2018)
[62]
Eyer, G.P. , Kittilstved, K.R. , Andrew, T.L. : Anomalous paramagnetism in closed-shell molecular semiconductors. J. Phys. Chem. C 121 (45), 24929- 24935 (2017)

RIGHTS & PERMISSIONS

2023 The Author(s)
AI Summary AI Mindmap
PDF(2566 KB)

Accesses

Citations

Detail

Sections
Recommended

/