Review of fabrication methods of large-area transparent graphene electrodes for industry

Petri MUSTONEN, David M. A. MACKENZIE, Harri LIPSANEN

PDF(837 KB)
PDF(837 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (2) : 91-113. DOI: 10.1007/s12200-020-1011-5
REVIEW ARTICLE
REVIEW ARTICLE

Review of fabrication methods of large-area transparent graphene electrodes for industry

Author information +
History +

Abstract

Graphene is a two-dimensional material showing excellent properties for utilization in transparent electrodes; it has low sheet resistance, high optical transmission and is flexible. Whereas the most common transparent electrode material, tin-doped indium-oxide (ITO) is brittle, less transparent and expensive, which limit its compatibility in flexible electronics as well as in low-cost devices. Here we review two large-area fabrication methods for graphene based transparent electrodes for industry: liquid exfoliation and low-pressure chemical vapor deposition (CVD). We discuss the basic methodologies behind the technologies with an emphasis on optical and electrical properties of recent results. State-of-the-art methods for liquid exfoliation have as a figure of merit an electrical and optical conductivity ratio of 43.5, slightly over the minimum required for industry of 35, while CVD reaches as high as 419.

Graphical abstract

Keywords

transparent electrodes / graphene / liquid exfoliation / chemical vapor deposition (CVD)

Cite this article

Download citation ▾
Petri MUSTONEN, David M. A. MACKENZIE, Harri LIPSANEN. Review of fabrication methods of large-area transparent graphene electrodes for industry. Front. Optoelectron., 2020, 13(2): 91‒113 https://doi.org/10.1007/s12200-020-1011-5

References

[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
CrossRef Pubmed Google scholar
[2]
Peierls R. Quelques propriétés typiques des corps solides. Annales de l'Institut Henri Poincaré, 1935, 5(3): 177–222
[3]
Landau L D. On the theory of phase transitions. Ukrainian Journal of Physical, 1937, 11: 19–32
[4]
Mermin N D. Crystalline order in two dimensions. Physical Review, 1968, 176(1): 250–254
CrossRef Google scholar
[5]
Nelson D R, Peliti L. Fluctuations in membranes with crystalline and hexatic order. Journal de Physique (Paris), 1988, 49(1): 139
CrossRef Google scholar
[6]
Banszerus L, Schmitz M, Engels S, Goldsche M, Watanabe K, Taniguchi T, Beschoten B, Stampfer C. Ballistic transport exceeding 28 mm in CVD grown graphene. Nano Letters, 2016, 16(2): 1387–1391
CrossRef Pubmed Google scholar
[7]
Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters, 2011, 11(6): 2396–2399
CrossRef Pubmed Google scholar
[8]
Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R. One-dimensional electrical contact to a two-dimensional material. Science, 2013, 342(6158): 614–617
CrossRef Pubmed Google scholar
[9]
Hwang E H, Adam S, Sarma S D. Carrier transport in two-dimensional graphene layers. Physical Review Letters, 2007, 98(18): 186806
CrossRef Pubmed Google scholar
[10]
Lee G H, Cooper R C, An S J, Lee S, van der Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W, Kysar J W, Hone J. High-strength chemical-vapor-deposited graphene and grain boundaries. Science, 2013, 340(6136): 1073–1076
CrossRef Pubmed Google scholar
[11]
Xu J, Yuan G, Zhu Q, Wang J, Tang S, Gao L. Enhancing the strength of graphene by a denser grain boundary. ACS Nano, 2018, 12(5): 4529–4535
CrossRef Pubmed Google scholar
[12]
Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388
CrossRef Pubmed Google scholar
[13]
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308
CrossRef Pubmed Google scholar
[14]
Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581
CrossRef Pubmed Google scholar
[15]
Zheng Q, Ip W H, Lin X, Yousefi N, Yeung K K, Li Z, Kim J K. Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano, 2011, 5(7): 6039–6051
CrossRef Pubmed Google scholar
[16]
Pham V P, Mishra A, Young Yeom G. The enhancement of Hall mobility and conductivity of CVD graphene through radical doping and vacuum annealing. RSC Advances, 2017, 7(26): 16104–16108
CrossRef Google scholar
[17]
Suzuki S, Yoshimura M. Chemical stability of graphene coated silver substrates for surface-enhanced raman scattering. Scientific Reports, 2017, 7(1): 14851
CrossRef Pubmed Google scholar
[18]
Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C, Mauri F. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nature Materials, 2007, 6(3): 198–201
CrossRef Pubmed Google scholar
[19]
Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Room-temperature quantum Hall effect in graphene. Science, 2007, 315(5817): 1379
CrossRef Pubmed Google scholar
[20]
Zhang Y, Tan Y W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201–204
CrossRef Pubmed Google scholar
[21]
Bolotin K I, Ghahari F, Shulman M D, Stormer H L, Kim P. Observation of the fractional quantum Hall effect in graphene. Nature, 2009, 462(7270): 196–199
CrossRef Pubmed Google scholar
[22]
Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J, Niu Q. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(16): 161414
CrossRef Google scholar
[23]
Levy D, Castellón E. Transparent Conductive Materials: Materials, Synthesis, Characterization, Applications. New York: John Wiley & Sons, 2018
[24]
Hu Y, Diao X, Wang C, Hao W, Wang T. Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering. Vacuum, 2004, 75(2): 183–188
CrossRef Google scholar
[25]
Alzoubi K, Hamasha M M, Lu S, Sammakia B. Bending fatigue study of sputtered ITO on flexible substrate. Journal of Display Technology, 2011, 7(11): 593–600
CrossRef Google scholar
[26]
Im H G, Jeong S, Jin J, Lee J, Youn D Y, Koo W T, Kang S B, Kim H J, Jang J, Lee D, Kim H K, Kim I D, Lee J Y, Bae B S. Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Materials, 2016, 8(6): e282
CrossRef Google scholar
[27]
Park S H, Lee S J, Lee J H, Kal J, Hahn J, Kim H K. Large area roll-to-roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules. Organic Electronics, 2016, 30: 112–121
CrossRef Google scholar
[28]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
CrossRef Pubmed Google scholar
[29]
Suslick K S. Sonochemistry. Science, 1990, 247(4949): 1439–1445
CrossRef Pubmed Google scholar
[30]
Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of grapheme. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(22): 11700–11715
CrossRef Google scholar
[31]
Chen X, Dobson J F, Raston C L. Vortex fluidic exfoliation of graphite and boron nitride. Chemical Communications (Cambridge), 2012, 48(31): 3703–3705
CrossRef Pubmed Google scholar
[32]
Paton K R, Varrla E, Backes C, Smith R J, Khan U, O’Neill A, Boland C, Lotya M, Istrate O M, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien S E, McGuire E K, Sanchez B M, Duesberg G S, McEvoy N, Pennycook T J, Downing C, Crossley A, Nicolosi V, Coleman J N. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials, 2014, 13(6): 624–630
CrossRef Pubmed Google scholar
[33]
Lin Z, Karthik P S, Hada M, Nishikawa T, Hayashi Y. Simple technique of exfoliation and dispersion of multilayer graphene from natural graphite by ozone-assisted sonication. Nanomaterials (Basel, Switzerland), 2017, 7(6): 125
CrossRef Pubmed Google scholar
[34]
Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K, Novoselov K S. Graphene-based liquid crystal device. Nano Letters, 2008, 8(6): 1704–1708
CrossRef Pubmed Google scholar
[35]
Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gun’Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3(9): 563–568
CrossRef Pubmed Google scholar
[36]
Bunch J S, Yaish Y, Brink M, Bolotin K, McEuen P L. Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots. Nano Letters, 2005, 5(2): 287–290
CrossRef Pubmed Google scholar
[37]
Hernandez Y, Lotya M, Rickard D, Bergin S D, Coleman J N. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir, 2010, 26(5): 3208–3213
CrossRef Pubmed Google scholar
[38]
Bergin S D, Nicolosi V, Streich P V, Giordani S, Sun Z, Windle A H, Ryan P, Niraj N P P, Wang Z T T, Carpenter L, Blau W J, Boland J J, Hamilton J P, Coleman J N. Towards solutions of single-walled carbon nanotubes in common solvents. Advanced Materials, 2008, 20(10): 1876–1881
CrossRef Google scholar
[39]
Coleman J N. Liquid-phase exfoliation of nanotubes and graphene. Advanced Functional Materials, 2009, 19(23): 3680–3695
CrossRef Google scholar
[40]
Liang Y T, Hersam M C. Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and iterative solvent exchange. Journal of the American Chemical Society, 2010, 132(50): 17661–17663
CrossRef Pubmed Google scholar
[41]
Park K H, Kim B H, Song S H, Kwon J, Kong B S, Kang K, Jeon S. Exfoliation of non-oxidized graphene flakes for scalable conductive film. Nano Letters, 2012, 12(6): 2871–2876
CrossRef Pubmed Google scholar
[42]
Tomašević-Ilić T, Pešić J, Milošević I, Vujin J, Matković A, Spasenović M, Gajić R. Transparent and conductive films from liquid phase exfoliated graphene. Optical and Quantum Electronics, 2016, 48(6): 319
CrossRef Google scholar
[43]
Majee S, Song M, Zhang S L, Zhang Z B. Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon, 2016, 102: 51–57
CrossRef Google scholar
[44]
Narayan R, Kim S O. Surfactant mediated liquid phase exfoliation of graphene. Nano Convergence, 2015, 2(1): 20
CrossRef Pubmed Google scholar
[45]
Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Advanced Functional Materials, 2008, 18(10): 1518–1525
CrossRef Google scholar
[46]
Khan U, O’Neill A, Lotya M, De S, Coleman J N. High-concentration solvent exfoliation of graphene. Small, 2010, 6(7): 864–871
CrossRef Pubmed Google scholar
[47]
Li J, Yan H, Dang D, Wei W, Meng L. Salt and water co-assisted exfoliation of graphite in organic solvent for efficient and large scale production of high-quality graphene. Journal of Colloid and Interface Science, 2019, 535: 92–99
CrossRef Pubmed Google scholar
[48]
Zhang M, Parajuli R R, Mastrogiovanni D, Dai B, Lo P, Cheung W, Brukh R, Chiu P L, Zhou T, Liu Z, Garfunkel E, He H. Production of graphene sheets by direct dispersion with aromatic healing agents. Small, 2010, 6(10): 1100–1107
CrossRef Pubmed Google scholar
[49]
Liu L, Rim K T, Eom D, Heinz T F, Flynn G W. Direct observation of atomic scale graphitic layer growth. Nano Letters, 2008, 8(7): 1872–1878
CrossRef Pubmed Google scholar
[50]
Tung T T, Yoo J, Alotaibi F K, Nine M J, Karunagaran R, Krebsz M, Nguyen G T, Tran D N H, Feller J F, Losic D. Graphene oxide-assisted liquid phase exfoliation of graphite into graphene for highly conductive film and electromechanical sensors. ACS Applied Materials & Interfaces, 2016, 8(25): 16521–16532
CrossRef Pubmed Google scholar
[51]
Majee S, Song M, Zhang S L, Zhang Z B. Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon, 2016, 102: 51–57
CrossRef Google scholar
[52]
Shin D W, Barnes M D, Walsh K, Dimov D, Tian P, Neves A I S, Wright C D, Yu S M, Yoo J B, Russo S, Craciun M F. A new facile route to flexible and semi-transparent electrodes based on water exfoliated graphene and their single-electrode triboelectric nanogenerator. Advanced Materials, 2018, 30(39): 1802953
CrossRef Pubmed Google scholar
[53]
Fukushima T, Aida T. Ionic liquids for soft functional materials with carbon nanotubes. Chemistry (Weinheim an der Bergstrasse, Germany), 2007, 13(18): 5048–5058
CrossRef Pubmed Google scholar
[54]
Su C Y, Lu A Y, Xu Y, Chen F R, Khlobystov A N, Li L J. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano, 2011, 5(3): 2332–2339
CrossRef Pubmed Google scholar
[55]
Liu J, Notarianni M, Will G, Tiong V T, Wang H, Motta N. Electrochemically exfoliated graphene for electrode films: effect of graphene flake thickness on the sheet resistance and capacitive properties. Langmuir, 2013, 29(43): 13307–13314
CrossRef Pubmed Google scholar
[56]
Parvez K, Wu Z S, Li R, Liu X, Graf R, Feng X, Müllen K. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society, 2014, 136(16): 6083–6091
CrossRef Pubmed Google scholar
[57]
Zhang Y, Xu Y. Simultaneous electrochemical dual-electrode exfoliation of graphite toward scalable production of high-quality graphene. Advanced Functional Materials, 2019, 29(37): 1902171
CrossRef Google scholar
[58]
Roscher S, Hoffmann R, Prescher M, Knittel P, Ambacher O. High voltage electrochemical exfoliation of graphite for high-yield graphene production. RSC Advances, 2019, 9: 29305–29311
[59]
Hummers W S Jr, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339
CrossRef Google scholar
[60]
Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M. Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon, 2004, 42(14): 2929–2937
CrossRef Google scholar
[61]
Shahriary L, Athawale A A. Graphene oxide synthesized by using modified hummers approach. International Journal of Renewable Energy and Environmental Engineering, 2014, 2(1): 58–63
[62]
Dreyer D R, Todd A D, Bielawski C W. Harnessing the chemistry of graphene oxide. Chemical Society Reviews, 2014, 43(15): 5288–5301
CrossRef Pubmed Google scholar
[63]
Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan K A, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Advanced Functional Materials, 2009, 19(16): 2577–2583
CrossRef Google scholar
[64]
Wang S J, Geng Y, Zheng Q, Kim J K. Fabrication of highly conducting and transparent graphene films. Carbon, 2010, 48(6): 1815–1823
CrossRef Google scholar
[65]
Geng J, Jung H T. Porphyrin functionalized graphene sheets in aqueous suspensions: from the preparation of graphene sheets to highly conductive graphene films. Journal of Physical Chemistry C, 2010, 114(18): 8227–8234
CrossRef Google scholar
[66]
Pham V H, Cuong T V, Hur S H, Shin E W, Kim J S, Chung J S, Kim E J. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon, 2010, 48(7): 1945–1951
CrossRef Google scholar
[67]
Alahbakhshi M, Fallahi A, Mohajerani E, Fathollahi M R, Taromi F A, Shahinpoor M. High-performance Bi-stage process in reduction of graphene oxide for transparent conductive electrodes. Optical Materials, 2017, 64: 366–375
CrossRef Google scholar
[68]
Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2008, 2(3): 463–470
CrossRef Pubmed Google scholar
[69]
Wang J, Liang M, Fang Y, Qiu T, Zhang J, Zhi L. Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Advanced Materials, 2012, 24(21): 2874–2878
CrossRef Pubmed Google scholar
[70]
De S, Coleman J N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano, 2010, 4(5): 2713–2720
CrossRef Pubmed Google scholar
[71]
Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M, De S, Wang Z, McGovern I T, Duesberg G S, Coleman J N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society, 2009, 131(10): 3611–3620
CrossRef Pubmed Google scholar
[72]
De S, King P J, Lotya M, O’Neill A, Doherty E M, Hernandez Y, Duesberg G S, Coleman J N. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small, 2010, 6(3): 458–464
CrossRef Pubmed Google scholar
[73]
Au C T, Ng C F, Liao M S. Methane dissociation and syngas formation on Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, and Au: a theoretical study. Journal of Catalysis, 1999, 185(1): 12–22
CrossRef Google scholar
[74]
Nandamuri G, Roumimov S, Solanki R. Chemical vapor deposition of graphene films. Nanotechnology, 2010, 21(14): 145604
CrossRef Pubmed Google scholar
[75]
An H, Lee W J, Jung J. Graphene synthesis on Fe foil using thermal CVD. Current Applied Physics, 2011, 11(4): S81–S85
CrossRef Google scholar
[76]
Cushing G W, Johánek V, Navin J K, Harrison I. Graphene growth on Pt(111) by ethylene chemical vapor deposition at surface temperatures near 1000 K. Journal of Physical Chemistry C, 2015, 119(9): 4759–4768
CrossRef Google scholar
[77]
Imamura G, Saiki K. Synthesis of nitrogen-doped graphene on Pt(111) by chemical vapor deposition. Journal of Physical Chemistry C, 2011, 115(20): 10000–10005
CrossRef Google scholar
[78]
Zhao L, Rim K T, Zhou H, He R, Heinz T F, Pinczuk A, Flynn G W, Pasupathy A N. Influence of copper crystal surface on the CVD growth of large area monolayer graphene. Solid State Communications, 2011, 151(7): 509–513
CrossRef Google scholar
[79]
Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour J M. Growth of graphene from solid carbon sources. Nature, 2010, 468(7323): 549–552
CrossRef Pubmed Google scholar
[80]
Virojanadara C, Syväjarvi M, Yakimova R, Johansson L I, Zakharov A A, Balasubramanian T. Homogeneous large-area graphene layer growth on 6 H-SiC(0001). Physical Review B: Condensed Matter and Materials Physics, 2008, 78(24): 245403
CrossRef Google scholar
[81]
Wassei J K, Mecklenburg M, Torres J A, Fowler J D, Regan B C, Kaner R B, Weiller B H. Chemical vapor deposition of graphene on copper from methane, ethane and propane: evidence for bilayer selectivity. Small, 2012, 8(9): 1415–1422
CrossRef Pubmed Google scholar
[82]
Wan X, Chen K, Liu D, Chen J, Miao Q, Xu J. High-quality large-area graphene from dehydrogenated polycyclic aromatic hydrocarbons. Chemistry of Materials, 2012, 24(20): 3906–3915
CrossRef Google scholar
[83]
Backes C, Abdelkader A M, Alonso C, Andrieux-Ledier A, Arenal R, Azpeitia J, Balakrishnan N, Banszerus L, Barjon J, Bartali R, Bellani S, Berger C, Berger R, Bernal Ortega M M, Bernard C, Beton P H, Beyer A, Bianco A, Bøggild P, Bonaccorso F, Barin G B, Botas C, Bueno R A, Carriazo D, Castellanos-Gomez A, Christian M, Ciesielski A, Ciuk T, Cole M T, Coleman J, Coletti C, Crema L, Cun H, Dasler D, Fazio D D, Díez N, Drieschner S, Duesberg G S, Fasel R, Feng X, Fina A, Forti S, Galiotis C, Garberoglio G, García J M, Garrido J A, Gibertini M, Gölzhäuser A, Gómez J, Greber T, Hauke F, Hemmi A, Hernandez-Rodriguez I, Hirsch A, Hodge S A, Huttel Y, Jepsen P U, Jimenez I, Kaiser U, Kaplas T, Kim H, Kis A, Papagelis K, Kostarelos K, Krajewska A, Lee K, Li C, Lipsanen H, Liscio A, Lohe M R, Loiseau A, Lombardi L, López M F, Martin O, Martín C, Martínez L, Martin-Gago J A, Martínez J I, Marzari N, Mayoral A, Melucci M J, Méndez J, Merino C, Merino P, Meyer A P, Miniussi E, Miseikis V, Mishra N, Morandi V, Munuera C, Muñoz R, Nolan H, Ortolani L, Ott A K, Palacio I, Palermo V, Parthenios J, Pasternak I, Patane A, Prato M, Prevost H, Prudkovskiy V, Pugno N, Rojo T, Rossi A, Ruffieux P, Samorì P, Schué L, Setijadi E, Seyller T, Speranza G, Stampfer C, Stenger I, Strupinski W, Svirko Y, Taioli S, Teo K B K, Testi M, Tomarchio F, Tortello M, Treossi E, Turchanin A, Vazquez E, Villaro E, Whelan P R, Xia Z, Yakimova R, Yang S, Yazdi G R, Yim C, Yoon D, Zhang X, Zhuang X, Colombo L, Ferrari A C, Garcia-Hernandez M. Production and processing of graphene and related materials. 2D Materials, 2020, 7(2): 022001
CrossRef Google scholar
[84]
Losurdo M, Giangregorio M M, Capezzuto P, Bruno G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Physical Chemistry Chemical Physics, 2011, 13(46): 20836–20843
CrossRef Pubmed Google scholar
[85]
Gajewski G, Pao C W. Ab initio calculations of the reaction pathways for methane decomposition over the Cu (111) surface. Journal of Chemical Physics, 2011, 135(6): 064707
CrossRef Pubmed Google scholar
[86]
Kim H, Mattevi C, Calvo M R, Oberg J C, Artiglia L, Agnoli S, Hirjibehedin C F, Chhowalla M, Saiz E. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano, 2012, 6(4): 3614–3623
CrossRef Pubmed Google scholar
[87]
Xing S, Wu W, Wang Y, Bao J, Pei S S. Kinetic study of graphene growth: temperature perspective on growth rate and film thickness by chemical vapor deposition. Chemical Physics Letters, 2013, 580: 62–66
CrossRef Google scholar
[88]
Colombo L, Li X, Han B, Magnuson C, Cai W, Zhu Y, Ruoff R S. Growth kinetics and defects of CVD graphene on Cu. ECS Transactions, 2010, 28: 109–114
[89]
Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science, 2013, 342(6159): 720–723
CrossRef Pubmed Google scholar
[90]
Shu H, Chen X, Tao X, Ding F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano, 2012, 6(4): 3243–3250
CrossRef Pubmed Google scholar
[91]
Shibuta Y, Arifin R, Shimamura K, Oguri T, Shimojo F, Yamaguchi S. Low reactivity of methane on copper surface during graphene synthesis via CVD process: Ab initio molecular dynamics simulation. Chemical Physics Letters, 2014, 610–611: 33–38
CrossRef Google scholar
[92]
Liao M S, Au C T, Ng C F. Methane dissociation on Ni, Pd, Pt and Cu metal (111) surfaces—a theoretical comparative study. Chemical Physics Letters, 1997, 272(5–6): 445–452
CrossRef Google scholar
[93]
Guéret C, Daroux M, Billaud F. Methane pyrolysis: thermodynamics. Chemical Engineering Science, 1997, 52(5): 815–827
CrossRef Google scholar
[94]
Viñes F, Lykhach Y, Staudt T, Lorenz M P A, Papp C, Steinrück H P, Libuda J, Neyman K M, Görling A. Methane activation by platinum: critical role of edge and corner sites of metal nanoparticles. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(22): 6530–6539
CrossRef Pubmed Google scholar
[95]
Loginova E, Bartelt N C, Feibelman P J, McCarty K F. Evidence for graphene growth by C cluster attachment. New Journal of Physics, 2008, 10(9): 093026
CrossRef Google scholar
[96]
Loginova E, Bartelt N C, Feibelman P J, McCarty K F. Factors influencing graphene growth on metal surfaces. New Journal of Physics, 2009, 11(6): 063046
CrossRef Google scholar
[97]
López G A, Mittemeijer E J. The solubility of C in solid Cu. Scripta Materialia, 2004, 51(1): 1–5
CrossRef Google scholar
[98]
Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706–710
CrossRef Pubmed Google scholar
[99]
Cai W, Piner R D, Zhu Y, Li X, Tan Z, Floresca H C, Yang C, Lu L, Kim M J, Ruoff R S. Synthesis of isotopically-labeled graphite films by cold-wall chemical vapor deposition and electronic properties of graphene obtained from such films. Nano Research, 2009, 2(11): 851–856
CrossRef Google scholar
[100]
Wu P, Zhang W, Li Z, Yang J. Mechanisms of graphene growth on metal surfaces: theoretical perspectives. Small, 2014, 10(11): 2136–2150
CrossRef Pubmed Google scholar
[101]
Huang L, Chang Q H, Guo G L, Liu Y, Xie Y Q, Wang T, Ling B, Yang H F. Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition. Carbon, 2012, 50(2): 551–556
CrossRef Google scholar
[102]
Li H B, Page A J, Wang Y, Irle S, Morokuma K. Sub-surface nucleation of graphene precursors near a Ni(111) step-edge. Chemical Communications (Cambridge), 2012, 48(64): 7937–7939
CrossRef Pubmed Google scholar
[103]
Verma V P, Das S, Lahiri I, Choi W. Large-area graphene on polymer film for flexible and transparent anode in field emission device. Applied Physics Letters, 2010, 96(20): 203108
CrossRef Google scholar
[104]
Kalita G, Matsushima M, Uchida H, Wakita K, Umeno M. Graphene constructed carbon thin films as transparent electrodes for solar cell applications. Journal of Materials Chemistry, 2010, 20(43): 9713–9717
CrossRef Google scholar
[105]
Nagai Y, Sugime H, Noda S. 1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions. Chemical Engineering Science, 2019, 201: 319–324
CrossRef Google scholar
[106]
Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5(8): 574–578
CrossRef Pubmed Google scholar
[107]
Kim Y, Kim S, Lee W H, Kim H.Direct transfer of CVD-grown graphene onto eco-friendly cellulose film for highly sensitive gas sensor. Cellulose, 2020, 27: 1685–1693
CrossRef Google scholar
[108]
Kim M, Shah A, Li C, Mustonen P, Susoma J, Manoocheri F, Riikonen J, Lipsanen H. Direct transfer of wafer-scale graphene films. 2D Materials, 2017, 4(3): 035004
[109]
Park I J, Kim T I, Yoon T, Kang S, Cho H, Cho N S, Lee J I, Kim T S, Choi S Y. Flexible and transparent graphene electrode architecture with selective defect decoration for organic light-emitting diodes. Advanced Functional Materials, 2018, 28(10): 1704435
CrossRef Google scholar
[110]
Liang X, Sperling B A, Calizo I, Cheng G, Hacker C A, Zhang Q, Obeng Y, Yan K, Peng H, Li Q, Zhu X, Yuan H, Walker A R, Liu Z, Peng L M, Richter C A. Toward clean and crackless transfer of graphene. ACS Nano, 2011, 5(11): 9144–9153
CrossRef Pubmed Google scholar
[111]
Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L, Ruoff R S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters, 2009, 9(12): 4359–4363
CrossRef Pubmed Google scholar
[112]
Gammelgaard L, Caridad J M, Cagliani A, Mackenzie D M A, Petersen D H, Booth T J, Bøggild P. Graphene transport properties upon exposure to PMMA processing and heat treatments. 2D Materials, 2014, 1(3): 035005
[113]
Chan J, Venugopal A, Pirkle A, McDonnell S, Hinojos D, Magnuson C W, Ruoff R S, Colombo L, Wallace R M, Vogel E M. Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition. ACS Nano, 2012, 6(4): 3224–3229
CrossRef Pubmed Google scholar
[114]
Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K, Chiu P W. Graphene annealing: how clean can it be? Nano Letters, 2012, 12(1): 414–419
CrossRef Pubmed Google scholar
[115]
Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Cheng H M, Ren W. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications, 2017, 8(1): 14560
CrossRef Pubmed Google scholar
[116]
Lin Y C, Jin C, Lee J C, Jen S F, Suenaga K, Chiu P W. Clean transfer of graphene for isolation and suspension. ACS Nano, 2011, 5(3): 2362–2368
CrossRef Pubmed Google scholar
[117]
Kang M H, Prieto López L O, Chen B, Teo K, Williams J A, Milne W I, Cole M T. Mechanical robustness of graphene on flexible transparent substrates. ACS Applied Materials & Interfaces, 2016, 8(34): 22506–22515
CrossRef Pubmed Google scholar
[118]
Song J, Kam F Y, Png R Q, Seah W L, Zhuo J M, Lim G K, Ho P K H, Chua L L. A general method for transferring graphene onto soft surfaces. Nature Nanotechnology, 2013, 8(5): 356–362
CrossRef Pubmed Google scholar
[119]
Yoon J C, Thiyagarajan P, Ahn H J, Jang J H. A case study: effect of defects in CVD-grown graphene on graphene enhanced Raman spectroscopy. RSC Advances, 2015, 5(77): 62772–62777
CrossRef Google scholar
[120]
Qin L, Kattel B, Kafle T R, Alamri M, Gong M, Panth M, Hou Y, Wu J, Chan W. Scalable graphene-on-organometal halide perovskite heterostructure fabricated by dry transfer. Advanced Materials Interfaces, 2019, 6(1): 1801419
CrossRef Google scholar
[121]
Chandrashekar B N, Deng B, Smitha A S, Chen Y, Tan C, Zhang H, Peng H, Liu Z. Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Advanced Materials, 2015, 27(35): 5210–5216
CrossRef Pubmed Google scholar
[122]
Marchena M, Wagner F, Arliguie T, Zhu B, Johnson B, Fernández M, Chen T L, Chang T, Lee R, Pruneri V, Mazumder P. Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer. 2D Materials, 2018, 5(3): 035022
[123]
Shivayogimath A, Whelan P R, Mackenzie D M A, Luo B, Huang D, Luo D, Wang M, Gammelgaard L, Shi H, Ruoff R S, Bøggild P, Booth T J. Do-it-yourself transfer of large-area graphene using an office laminator and water. Chemistry of Materials, 2019, 31(7): 2328–2336
CrossRef Google scholar
[124]
Kang J, Hwang S, Kim J H, Kim M H, Ryu J, Seo S J, Hong B H, Kim M K, Choi J B. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing. ACS Nano, 2012, 6(6): 5360–5365
CrossRef Pubmed Google scholar
[125]
Fechine G J M, Martin-Fernandez I, Yiapanis G, Bentini R, Kulkarni E S, Bof de Oliveira R V, Hu X, Yarovsky I, Castro Neto A H, Özyilmaz B. Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon, 2015, 83: 224–231
CrossRef Google scholar
[126]
Cherian C T, Giustiniano F, Martin-Fernandez I, Andersen H, Balakrishnan J, Özyilmaz B. ‘Bubble-free’ electrochemical delamination of CVD graphene films. Small, 2015, 11(2): 189–194
CrossRef Pubmed Google scholar
[127]
Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano, 2011, 5(12): 9927–9933
CrossRef Pubmed Google scholar
[128]
Pizzocchero F, Jessen B S, Whelan P R, Kostesha N, Lee S, Buron J D, Petrushina I, Larsen M B, Greenwood P, Cha W J, Teo K, Jepsen P U, Hone J, Bøggild P, Booth T J. Non-destructive electrochemical graphene transfer from reusable thin-film catalysts. Carbon, 2015, 85: 397–405
CrossRef Google scholar
[129]
Zhan Z, Sun J, Liu L, Wang E, Cao Y, Lindvall N, Skoblin G, Yurgens A. Pore-free bubbling delamination of chemical vapor deposited graphene from copper foils. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2015, 3(33): 8634
CrossRef Google scholar
[130]
Sun J, Chen Y, Cai X, Ma B, Chen Z, Priydarshi M K, Chen K, Gao T, Song X, Ji Q, Guo X, Zou D, Zhang Y, Liu Z. Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Research, 2015, 8(11): 3496–3504
CrossRef Google scholar
[131]
Wei D, Peng L, Li M, Mao H, Niu T, Han C, Chen W, Wee A T S. Low temperature critical growth of high quality nitrogen doped graphene on dielectrics by plasma-enhanced chemical vapor deposition. ACS Nano, 2015, 9(1): 164–171
CrossRef Pubmed Google scholar
[132]
Zheng S, Zhong G, Wu X, D’Arsiè L, Robertson J. Metal-catalyst-free growth of graphene on insulating substrates by ammonia-assisted microwave plasma-enhanced chemical vapor deposition. RSC Advances, 2017, 7: 33185–33193
[133]
Schmidt M E, Xu C, Cooke M, Mizuta H, Chong H M H. Metal-free plasma-enhanced chemical vapor deposition of large area nanocrystalline grapheme. Materials Research Express, 2014, 1(2): 025031
CrossRef Google scholar
[134]
Wei N, Li Q, Cong S, Ci H, Song Y, Yang Q, Lu C, Li C, Zou G, Sun J, Zhang Y, Liu Z. Direct synthesis of flexible graphene glass with macroscopic uniformity enabled by copper-foam-assisted PECVD. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(9): 4813–4822
CrossRef Google scholar
[135]
Chen Z, Liu Y, Zhang W, Guo X, Yin L, Wang Y, Li L, Zhang Y, Wang Z, Zhang T. Growth of graphene/Ag nanowire/graphene sandwich films for transparent touch-sensitive electrodes. Materials Chemistry and Physics, 2019, 221: 78–88
CrossRef Google scholar
[136]
Vishwakarma R, Zhu R, Abuelwafa A A, Mabuchi Y, Adhikari S, Ichimura S, Soga T, Umeno M. Direct synthesis of large-area graphene on insulating substrates at low temperature using microwave plasma CVD. ACS Omega, 2019, 4(6): 11263–11270
CrossRef Pubmed Google scholar
[137]
Park B J, Choi J S, Eom J H, Ha H, Kim H Y, Lee S, Shin H, Yoon S G. Defect-free graphene synthesized directly at 150°C via chemical vapor deposition with no transfer. ACS Nano, 2018, 12(2): 2008–2016
CrossRef Pubmed Google scholar
[138]
Tran V D, Pammi S V N, Park B J, Han Y, Jeon C, Yoon S G. Transfer-free graphene electrodes for super-flexible and semi-transparent perovskite solar cells fabricated under ambient air. Nano Energy, 2019, 65: 104018
CrossRef Google scholar
[139]
Kwon K C, Kim B J, Lee J L, Kim S Y. Effect of anions in Au complexes on doping and degradation of graphene. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2013, 1(13): 2463–2469
CrossRef Google scholar
[140]
Jang C W, Kim J M, Kim J H, Shin D H, Kim S, Choi S H. Degradation reduction and stability enhancement of p-type graphene by RhCl3 doping. Journal of Alloys and Compounds, 2015, 621: 1–6
CrossRef Google scholar
[141]
Bult J B, Crisp R, Perkins C L, Blackburn J L. Role of dopants in long-range charge carrier transport for p-type and n-type graphene transparent conducting thin films. ACS Nano, 2013, 7(8): 7251–7261
CrossRef Pubmed Google scholar
[142]
Liu H, Liu Y, Zhu D. Chemical doping of graphene. Journal of Materials Chemistry, 2011, 21(10): 3335–3345
CrossRef Google scholar
[143]
Chae M S, Lee T H, Son K R, Kim Y W, Hwang K S, Kim T G. Electrically-doped CVD-graphene transparent electrodes: application in 365 nm light-emitting diodes. Nanoscale Horizons, 2019, 4(3): 610–618
CrossRef Google scholar
[144]
Zhang X, Hsu A, Wang H, Song Y, Kong J, Dresselhaus M S, Palacios T. Impact of chlorine functionalization on high-mobility chemical vapor deposition grown graphene. ACS Nano, 2013, 7(8): 7262–7270
CrossRef Pubmed Google scholar
[145]
Gomez De Arco L, Zhang Y, Schlenker C W, Ryu K, Thompson M E, Zhou C. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 2010, 4(5): 2865–2873
CrossRef Pubmed Google scholar
[146]
Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009, 9(1): 30–35
CrossRef Pubmed Google scholar
[147]
Zan R, Altuntepe A. Nitrogen doping of graphene by CVD. Journal of Molecular Structure, 2020, 1199: 127026
CrossRef Google scholar
[148]
Kim K K, Reina A, Shi Y, Park H, Li L J, Lee Y H, Kong J. Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 2010, 21(28): 285205
CrossRef Pubmed Google scholar
[149]
Bi H, Huang F, Liang J, Xie X, Jiang M. Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells. Advanced Materials, 2011, 23(28): 3202–3206
CrossRef Pubmed Google scholar
[150]
Guo C, Kong X, Ji H. Hot-roll-pressing mediated transfer of chemical vapor deposition graphene for transparent and flexible touch screen with low sheet-resistance. Journal of Nanoscience and Nanotechnology, 2018, 18(6): 4337–4342
CrossRef Pubmed Google scholar
[151]
Chang J H, Lin W H, Wang P C, Taur J I, Ku T A, Chen W T, Yan S J, Wu C I. Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode. Scientific Reports, 2015, 5(1): 9693
CrossRef Pubmed Google scholar
[152]
Tongay S, Berke K, Lemaitre M, Nasrollahi Z, Tanner D B, Hebard A F, Appleton B R. Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology, 2011, 22(42): 425701
CrossRef Pubmed Google scholar
[153]
Xu S C, Man B Y, Jiang S Z, Chen C S, Yang C, Liu M, Gao X G, Sun Z C, Zhang C. Flexible and transparent graphene-based loudspeakers. Applied Physics Letters, 2013, 102(15): 151902
CrossRef Google scholar
[154]
Park H, Rowehl J A, Kim K K, Bulovic V, Kong J. Doped graphene electrodes for organic solar cells. Nanotechnology, 2010, 21(50): 505204
CrossRef Pubmed Google scholar
[155]
Galagan Y, Mescheloff A, Veenstra S C, Andriessen R, Katz E A. Reversible degradation in ITO-containing organic photovoltaics under concentrated sunlight. Physical Chemistry Chemical Physics, 2015, 17(5): 3891–3897
CrossRef Pubmed Google scholar
[156]
Chochos C L, Spanos M, Katsouras A, Tatsi E, Drakopoulou S, Gregoriou V G, Avgeropoulos A. Current status, challenges and future outlook of high performance polymer semiconductors for organic photovoltaics modules. Progress in Polymer Science, 2019, 91: 51–79
CrossRef Google scholar
[157]
Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy, 2016, 1(2): 15027
CrossRef Google scholar
[158]
Zhao W, Li S, Zhang S, Liu X, Hou J. Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency. Advanced Materials, 2017, 29(2): 1604059
CrossRef Pubmed Google scholar
[159]
Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang Z G, Li Y. A low cost and high performance polymer donor material for polymer solar cells. Nature Communications, 2018, 9(1): 743
CrossRef Pubmed Google scholar
[160]
Nogay G, Sahli F, Werner J, Monnard R, Boccard M, Despeisse M, Haug F J, Jeangros Q, Ingenito A, Ballif C. 25.1%-efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured silicon wafer and high-temperature passivating contacts. ACS Energy Letters, 2019, 4(4): 844–845
CrossRef Google scholar
[161]
La Notte L, Bianco G V, Palma A L, Di Carlo A, Bruno G, Reale A. Sprayed organic photovoltaic cells and mini-modules based on chemical vapor deposited graphene as transparent conductive electrode. Carbon, 2018, 129: 878–883
CrossRef Google scholar
[162]
Park H, Chang S, Zhou X, Kong J, Palacios T, Gradečak S. Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Letters, 2014, 14(9): 5148–5154
CrossRef Pubmed Google scholar
[163]
Liu J, Durstock M, Dai L. Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy & Environmental Science, 2014, 7(4): 1297–1306
CrossRef Google scholar
[164]
Capasso A, Salamandra L, Faggio G, Dikonimos T, Buonocore F, Morandi V, Ortolani L, Lisi N. Chemical vapor deposited graphene-based derivative as high-performance hole transport material for organic photovoltaics. ACS Applied Materials & Interfaces, 2016, 8(36): 23844–23853
CrossRef Pubmed Google scholar
[165]
Mackenzie D M A, Buron J D, Whelan P R, Jessen B S, Silajdźić A, Pesquera A, Centeno A, Zurutuza A, Bøggild P, Petersen D H. Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization. 2D Materials, 2015, 2(4): 045003
[166]
La Notte L, Villari E, Palma A L, Sacchetti A, Michela Giangregorio M, Bruno G, Di Carlo A, Bianco G V, Reale A. Laser-patterned functionalized CVD-graphene as highly transparent conductive electrodes for polymer solar cells. Nanoscale, 2017, 9(1): 62–69
CrossRef Pubmed Google scholar
[167]
Gomez De Arco L, Zhang Y, Schlenker C W, Ryu K, Thompson M E, Zhou C. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 2010, 4(5): 2865–2873
CrossRef Pubmed Google scholar
[168]
Park H, Howden R M, Barr M C, Bulović V, Gleason K, Kong J. Organic solar cells with graphene electrodes and vapor printed poly(3,4-ethylenedioxythiophene) as the hole transporting layers. ACS Nano, 2012, 6(7): 6370–6377
CrossRef Pubmed Google scholar
[169]
Lee B H, Lee J H, Kahng Y H, Kim N, Kim Y J, Lee J, Lee T, Lee K. Graphene-conducting polymer hybrid transparent electrodes for efficient organic optoelectronic devices. Advanced Functional Materials, 2014, 24(13): 1847–1856
CrossRef Google scholar
[170]
La Notte L, Cataldi P, Ceseracciu L, Bayer I S, Athanassiou A, Marras S, Villari E, Brunetti F, Reale A. Fully-sprayed flexible polymer solar cells with a cellulose-graphene electrode. Materials Today Energy, 2018, 7: 105–112
CrossRef Google scholar
[171]
Rezaei B, Afshar-Taromi F, Ahmadi Z, Amiri Rigi S, Yousefi N. Enhancement of power conversion efficiency of bulk heterojunction polymer solar cells using core/shell, Au/graphene plasmonic nanostructure. Materials Chemistry and Physics, 2019, 228: 325–335
CrossRef Google scholar
[172]
Mahakul P C, Sa K, Das B, Subramaniam B V R S, Saha S, Moharana B, Raiguru J, Dash S, Mukherjee J, Mahanandia P. Preparation and characterization of PEDOT:PSS/reduced graphene oxide–carbon nanotubes hybrid composites for transparent electrode applications. Journal of Materials Science, 2017, 52(10): 5696–5707
CrossRef Google scholar
[173]
Ricciardulli A G, Yang S, Wetzelaer G J A H, Feng X, Blom P W M. Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Advanced Functional Materials, 2018, 28(14): 1706010
CrossRef Google scholar
[174]
Wang M, Yu H, Ma X, Yao Y, Wang L, Liu L, Cao K, Liu S, Dong C, Zhao B, Song C, Chen S, Huang W. Copper oxide-modified graphene anode and its application in organic photovoltaic cells. Optics Express, 2018, 26(18): A769–A776
CrossRef Pubmed Google scholar
[175]
Nan H, Han J, Luo Q, Yin X, Zhou Y, Yao Z, Zhao X, Li X, Lin H. Economically synthesized NiCo2S4/reduced graphene oxide composite as efficient counter electrode in dye-sensitized solar cell. Applied Surface Science, 2018, 437: 227–232
CrossRef Google scholar
[176]
Sankar Ganesh R, Silambarasan K, Durgadevi E, Navaneethan M, Ponnusamy S, Kong C Y, Muthamizhchelvan C, Shimura Y, Hayakawa Y. Metal sulfide nanosheet–nitrogen-doped graphene hybrids as low-cost counter electrodes for dye-sensitized solar cells. Applied Surface Science, 2019, 480: 177–185
CrossRef Google scholar
[177]
Silambarasan K, Archana J, Athithya S, Harish S, Sankar Ganesh R, Navaneethan M, Ponnusamy S, Muthamizhchelvan C, Hara K, Hayakawa Y. Hierarchical NiO@NiS@graphene nanocomposite as a sustainable counter electrode for Pt free dye-sensitized solar cell. Applied Surface Science, 2020, 501: 144010
CrossRef Google scholar
[178]
Murugadoss V, Panneerselvam P, Yan C, Guo Z, Angaiah S. A simple one-step hydrothermal synthesis of cobalt nickel selenide/graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell. Electrochimica Acta, 2019, 312: 157–167
CrossRef Google scholar
[179]
Rehman S, Noman M, Khan A D, Saboor A, Ahmad M S, Khan H U. Synthesis of polyvinyl acetate /graphene nanocomposite and its application as an electrolyte in dye sensitized solar cells. Optik (Stuttgart), 2020, 202: 163591
CrossRef Google scholar
[180]
Chong S W, Lai C W, Juan J C, Leo B F. An investigation on surface modified TiO2 incorporated with graphene oxide for dye-sensitized solar cell. Solar Energy, 2019, 191: 663–671
CrossRef Google scholar
[181]
Wei L, Wang P, Yang Y, Zhan Z, Dong Y, Song W, Fan R. Enhanced performance of the dye-sensitized solar cells by the introduction of graphene oxide into the TiO2 photoanode. Inorganic Chemistry Frontiers, 2018, 5(1): 54–62
CrossRef Google scholar
[182]
Sasikumar R, Chen T W, Chen S M, Rwei S P, Ramaraj S K. Developing the photovoltaic performance of dye-sensitized solar cells (DSSCs) using a SnO2-doped graphene oxide hybrid nanocomposite as a photo-anode. Optical Materials, 2018, 79: 345–352
CrossRef Google scholar
[183]
Sadikin S N, Rahman M Y A, Umar A A, Aziz T H T. Improvement of dye-sensitized solar cell performance by utilizing graphene-coated TiO2 films photoanode. Superlattices and Microstructures, 2019, 128: 92–98
CrossRef Google scholar
[184]
NREL. Best research-cell efficiencies (National Renewable Energy Laboratory: Golden, Colorado), 2019
[185]
Bag M, Renna L A, Adhikari R Y, Karak S, Liu F, Lahti P M, Russell T P, Tuominen M T, Venkataraman D. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. Journal of the American Chemical Society, 2015, 137(40): 13130–13137
CrossRef Pubmed Google scholar
[186]
Bastos J P, Paetzold U W, Gehlhaar R, Qiu W, Cheyns D, Surana S, Spampinato V, Aernouts T, Poortmans J. Light-induced degradation of perovskite solar cells: the influence of 4-tert-butyl pyridine and gold. Advanced Energy Materials, 2018, 8(23): 1800554
CrossRef Google scholar
[187]
Raga S R, Jung M C, Lee M V, Leyden M R, Kato Y, Qi Y. Influence of air annealing on high efficiency planar structure perovskite solar cells. Chemistry of Materials, 2015, 27(5): 1597–1603
CrossRef Google scholar
[188]
Christians J A, Miranda Herrera P A, Kamat P V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. Journal of the American Chemical Society, 2015, 137(4): 1530–1538
CrossRef Pubmed Google scholar
[189]
Domanski K, Correa-Baena J P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A, Grätzel M. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano, 2016, 10(6): 6306–6314
CrossRef Pubmed Google scholar
[190]
Guerrero A, You J, Aranda C, Kang Y S, Garcia-Belmonte G, Zhou H, Bisquert J, Yang Y. Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano, 2016, 10(1): 218–224
CrossRef Pubmed Google scholar
[191]
Wang R, Mujahid M, Duan Y, Wang Z, Xue J, Yang Y. A review of perovskites solar cell stability. Advanced Functional Materials, 2019, 29(47): 1808843
CrossRef Google scholar
[192]
Jeong G, Koo D, Seo J, Jung S, Choi Y, Lee J, Park H. Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer. Nano Letters, 2020, 20(5): 3718–3727
CrossRef Google scholar
[193]
Tavakoli M M, Tavakoli R, Yadav P, Kong J. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(2): 679–686
CrossRef Google scholar
[194]
Kim J M, Jang C W, Kim J H, Kim S, Choi S H. Use of AuCl3-doped graphene as a protecting layer for enhancing the stabilities of inverted perovskite solar cells. Applied Surface Science, 2018, 455: 1131–1136
CrossRef Google scholar
[195]
Jokar E, Huang Z Y, Narra S, Wang C Y, Kattoor V, Chung C C, Diau E W G. Anomalous charge-extraction behavior for graphene-oxide (GO) and reduced graphene-oxide (rGO) films as efficient p-contact layers for high-performance perovskite solar cells. Advanced Energy Materials, 2018, 8(3): 1701640
CrossRef Google scholar
[196]
Cogal S, Calio L, Celik Cogal G, Salado M, Kazim S, Oksuz L, Ahmad S, Uygun Oksuz A. RF plasma-enhanced graphene–polymer composites as hole transport materials for perovskite solar cells. Polymer Bulletin, 2018, 75(10): 4531–4545
CrossRef Google scholar
[197]
Nouri E, Mohammadi M R, Lianos P. Improving the stability of inverted perovskite solar cells under ambient conditions with graphene-based inorganic charge transporting layers. Carbon, 2018, 126: 208–214
CrossRef Google scholar
[198]
Zhao X, Tao L, Li H, Huang W, Sun P, Liu J, Liu S, Sun Q, Cui Z, Sun L, Shen Y, Yang Y, Wang M. Efficient planar perovskite solar cells with improved fill factor via interface engineering with graphene. Nano Letters, 2018, 18(4): 2442–2449
CrossRef Pubmed Google scholar
[199]
O’Keeffe P, Catone D, Paladini A, Toschi F, Turchini S, Avaldi L, Martelli F, Agresti A, Pescetelli S, Del Rio Castillo A E, Bonaccorso F, Di Carlo A. Graphene-induced improvements of perovskite solar cell stability: effects on hot-carriers. Nano Letters, 2019, 19(2): 684–691
CrossRef Pubmed Google scholar
[200]
Yoon J, Sung H, Lee G, Cho W, Ahn N, Jung H S, Choi M. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy & Environmental Science, 2017, 10(1): 337–345
CrossRef Google scholar
[201]
Heo J H, Shin D H, Song D H, Kim D H, Lee S J, Im S H. Super-flexible bis(trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(18): 8251–8258
CrossRef Google scholar
[202]
Zhang C, Wang S, Zhang H, Feng Y, Tian W, Yan Y, Bian J, Wang Y, Jin S, Zakeeruddin S M, Grätzel M, Shi Y. Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design. Energy & Environmental Science, 2019, 12(12): 3585–3594
CrossRef Google scholar
[203]
Sung H, Ahn N, Jang M S, Lee J K, Yoon H, Park N G, Choi M. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Advanced Energy Materials, 2016, 6(3): 1501873
CrossRef Google scholar
[204]
Fu W, Jiang L, van Geest E P, Lima L M C, Schneider G F. Sensing at the surface of graphene field-effect transistors. Advanced Materials, 2017, 29(6): 1603610
CrossRef Pubmed Google scholar
[205]
Afsahi S, Lerner M B, Goldstein J M, Lee J, Tang X, Bagarozzi D A Jr, Pan D, Locascio L, Walker A, Barron F, Goldsmith B R. Novel graphene-based biosensor for early detection of Zika virus infection. Biosensors & Bioelectronics, 2018, 100: 85–88
CrossRef Pubmed Google scholar
[206]
Chen S, Sun Y, Xia Y, Lv K, Man B, Yang C. Donor effect dominated molybdenum disulfide/graphene nanostructure-based field-effect transistor for ultrasensitive DNA detection. Biosensors & Bioelectronics, 2020, 156: 112128
CrossRef Pubmed Google scholar
[207]
Hwang M T, Heiranian M, Kim Y, You S, Leem J, Taqieddin A, Faramarzi V, Jing Y, Park I, van der Zande A M, Nam S, Aluru N R, Bashir R. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nature Communications, 2020, 11(1): 1543
CrossRef Pubmed Google scholar
[208]
Kim S, Xing L, Islam A E, Hsiao M S, Ngo Y, Pavlyuk O M, Martineau R L, Hampton C M, Crasto C, Slocik J, Kadakia M P, Hagen J A, Kelley-Loughnane N, Naik R R, Drummy L F. In operando observation of neuropeptide capture and release on graphene field-effect transistor biosensors with picomolar sensitivity. ACS Applied Materials & Interfaces, 2019, 11(15): 13927–13934
CrossRef Pubmed Google scholar
[209]
Seo G, Lee G, Kim M J, Baek S H, Choi M, Ku K B, Lee C S, Jun S, Park D, Kim H G, Kim S J, Lee J O, Kim B T, Park E C, Kim S I. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14(4): 5135–5142
CrossRef Pubmed Google scholar
[210]
Loan P T K, Wu D, Ye C, Li X, Tra V T, Wei Q, Fu L, Yu A, Li L J, Lin C T. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection. Biosensors & Bioelectronics, 2018, 99: 85–91
CrossRef Pubmed Google scholar
[211]
Zhan H, Cervenka J, Prawer S, Garrett D J. Molecular detection by liquid gated Hall effect measurements of graphene. Nanoscale, 2018, 10(3): 930–935
CrossRef Pubmed Google scholar
[212]
Li N, Tang T, Li J, Luo L, Li C, Shen J, Yao J. Highly sensitive biosensor with graphene-MoS2 heterostructure based on photonic spin Hall effect. Journal of Magnetism and Magnetic Materials, 2019, 484: 445–450
CrossRef Google scholar
[213]
Zhou X, Sheng L, Ling X. Photonic spin Hall effect enabled refractive index sensor using weak measurements. Scientific Reports, 2018, 8(1): 1221
CrossRef Pubmed Google scholar
[214]
Zhao Z, Yang H, Zhao W, Deng S, Zhang K, Deng R, He Q, Gao H, Li J. Graphene-nucleic acid biointerface-engineered biosensors with tunable dynamic range. Journal of Materials Chemistry B, Materials for Biology and Medicine, 2020, 8(16): 3623–3630
CrossRef Pubmed Google scholar
[215]
Xie K X, Cao S H, Wang Z C, Weng Y H, Huo S X, Zhai Y Y, Chen M, Pan X H, Li Y Q. Graphene oxide-assisted surface plasmon coupled emission for amplified fluorescence immunoassay. Sensors and Actuators B, Chemical, 2017, 253: 804–808
CrossRef Google scholar
[216]
Sun L, Zhang Y, Wang Y, Yang Y, Zhang C, Weng X, Zhu S, Yuan X. Real-time subcellular imaging based on graphene biosensors. Nanoscale, 2018, 10(4): 1759–1765
CrossRef Pubmed Google scholar
[217]
Xu Y, Zhuang R, Zhang Z, Yi R, Guo X, Qi Z. Single-layer graphene-based surface plasmon resonance biosensors for immunization study. In: Proceedings of the 8th Applied Optics and Photonics China (AOPC 2019), Optical Spectroscopy Imaging, 2019, 11337
[218]
Rahman M S, Anower M S, Hasan M R, Hossain M B, Haque M I. Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Optics Communications, 2017, 396: 36–43
CrossRef Google scholar
[219]
Gopalan K K, Paulillo B, Mackenzie D M A, Rodrigo D, Bareza N, Whelan P R, Shivayogimath A, Pruneri V. Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics. Nano Letters, 2018, 18(9): 5913–5918
CrossRef Pubmed Google scholar
[220]
Siegel P H. Terahertz technology in biology and medicine. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(10): 2438–2447
CrossRef Google scholar
[221]
Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging–modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166
CrossRef Google scholar
[222]
Sengupta K. Integrated circuits for terahertz communication beyond 100 GHz: are we there yet? In: Proceedings of IEEE International Conference on Communications, Workshop ICC Workshop, 2019
[223]
Ajito K, Ueno Y. THz chemical imaging for biological applications. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 293–300
CrossRef Google scholar
[224]
Auton G, But D B, Zhang J, Hill E, Coquillat D, Consejo C, Nouvel P, Knap W, Varani L, Teppe F, Torres J, Song A. Terahertz detection and imaging using graphene ballistic rectifiers. Nano Letters, 2017, 17(11): 7015–7020
CrossRef Pubmed Google scholar
[225]
Yang X, Vorobiev A, Generalov A, Andersson M A, Stake J. A flexible graphene terahertz detector. Applied Physics Letters, 2017, 111(2): 021102
CrossRef Google scholar
[226]
Yang X X, Sun J D, Qin H, Lv L, Su L N, Yan B, Li X X, Zhang Z P, Fang J Y. Room-temperature terahertz detection based on CVD graphene transistor. Chinese Physics B, 2015, 24(4): 047206
CrossRef Google scholar
[227]
Valmorra F, Scalari G, Maissen C, Fu W, Schönenberger C, Choi J W, Park H G, Beck M, Faist J. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. Nano Letters, 2013, 13(7): 3193–3198
CrossRef Pubmed Google scholar
[228]
Generalov A A, Andersson M A, Yang X, Vorobiev A, Stake J A. 400-GHz graphene FET detector. IEEE Transactions on Terahertz Science and Technology, 2017, 7(5): 614–616
CrossRef Google scholar
[229]
Kakenov N, Ergoktas M S, Balci O, Kocabas C. Graphene based terahertz phase modulators. 2D Materials, 2018, 5(3): 035018
[230]
Shin J W, Cho H, Lee J, Moon J, Han J H, Kim K, Cho S, Lee J I, Kwon B H, Cho D H, Lee K M, Suemitsu M, Cho N S. Overcoming the efficiency limit of organic light-emitting diodes using ultra-thin and transparent graphene electrodes. Optics Express, 2018, 26(2): 617–626
CrossRef Pubmed Google scholar
[231]
Shin J W, Han J H, Cho H, Moon J, Kwon B H, Cho S, Yoon T, Kim T S, Suemitsu M, Lee J I, Cho N S. Display process compatible accurate graphene patterning for OLED applications. 2D Materials, 2017, 5(1): 014003
[232]
Lee J, Han T H, Park M H, Jung D Y, Seo J, Seo H K, Cho H, Kim E, Chung J, Choi S Y, Kim T S, Lee T W, Yoo S. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nature Communications, 2016, 7(1): 11791
CrossRef Pubmed Google scholar
[233]
Kwon O E, Shin J W, Oh H, Kang C, Cho H, Kwon B H, Byun C W, Yang J H, Lee K M, Han J H, Sung Cho N, Hyuk Yoon J, Jin Chae S, Sung Park J, Lee H, Hwang C S, Moon J, Lee J I. A prototype active-matrix OLED using graphene anode for flexible display application. Journal of Information Display, 2020, 21(1): 49–56
CrossRef Google scholar
[234]
Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Cheng H M, Ren W. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications, 2017, 8(1): 14560
CrossRef Pubmed Google scholar
[235]
Torres Alonso E, Karkera G, Jones G F, Craciun M F, Russo S. Homogeneously bright, flexible, and foldable lighting devices with functionalized graphene electrodes. ACS Applied Materials & Interfaces, 2016, 8(26): 16541–16545
CrossRef Pubmed Google scholar
[236]
Wang Z G, Chen Y F, Li P J, Hao X, Liu J B, Huang R, Li Y R. Flexible graphene-based electroluminescent devices. ACS Nano, 2011, 5(9): 7149–7154
CrossRef Pubmed Google scholar
[237]
Shin H, Sharma B K, Lee S W, Lee J B, Choi M, Hu L, Park C, Choi J H, Kim T W, Ahn J H. Stretchable electroluminescent display enabled by graphene-based hybrid electrode. ACS Applied Materials & Interfaces, 2019, 11(15): 14222–14228
CrossRef Pubmed Google scholar
[238]
Chandran A, Joshi T, Sharma I, Subhedar K M, Mehta D S, Biradar A M. Monolayer graphene electrodes as alignment layer for ferroelectric liquid crystal devices. Journal of Molecular Liquids, 2019, 279: 294–298
CrossRef Google scholar
[239]
Hu T, Wang H, Shao Y, Zhang X, Liu G, Li M, Chen H, Lee Y. 66-3: a high reliability PEDOT:PSS/graphene transparent electrode for liquid crystal displays. SID Symposium Digest of Technical Papers, 2017, 48(1): 972–975
[240]
Petrov S, Marinova V, Lin S H, Chang C M, Lin Y H, Hsu K Y. Large scale liquid crystal device with graphene-based electrodes. Optical Data Processing and Storage, 2017, 3(1): 114–118
CrossRef Google scholar
[241]
Mustapha N, Fekkai Z, Ibnaouf K H. Improved performance of organic light-emitting diodes based on oligomer thin films with graphene. Journal of Electronic Materials, 2020, 49(3): 2203–2210
CrossRef Google scholar
[242]
Fu Y, Sun J, Du Z, Guo W, Yan C, Xiong F, Wang L, Dong Y, Xu C, Deng J, Guo T, Yan Q F. Monolithic integrated device of GaN micro-LED with graphene transparent electrode and graphene active-matrix driving transistor. Materials (Basel), 2019, 12(3): 428
CrossRef Pubmed Google scholar

Acknowledgements

The work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement GrapheneCore2 number 785219, and GrapheneCore3 number 881603. We acknowledge the financial support from Academy of Finland (projects 298297 and 320167-PREIN Flagship).ƒ

Funding note

Open access funding provided by Aalto University.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.‚
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.‚
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.

RIGHTS & PERMISSIONS

2020 The Author(s) 2020. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(837 KB)

Accesses

Citations

Detail

Sections
Recommended

/