Time-delay signature characteristics of the chaotic output from an optoelectronic oscillator by introducing an optical feedback
Xixuan LIU, Xi TANG, Zhengmao WU, Guangqiong XIA
Time-delay signature characteristics of the chaotic output from an optoelectronic oscillator by introducing an optical feedback
In this work, via autocorrelation function (ACF) and permutation entropy (PE) methods, we numerically investigate the time-delay signature (TDS) characteristics of the chaotic signal output from an optoelectronic oscillator (OEO) after introducing an extra optical feedback loop. The results demonstrate that, for such a chaotic system, both the optoelectronic feedback with a delay time of T1 and the optical feedback with a delay time of T2 contribute to the TDS of generated chaos. The TDS of the chaotic signal should be evaluated within a large time window including T1 and T2 by the strongest peak in the ACF curve of the chaotic signal, and the strongest peak may locate at near T1 or T2. Through mapping the evolution of the TDS in the parameter space of the optical feedback strength and time, certain optimized parameter regions for achieving a chaotic signal with a relatively weak TDS can be determined.
optoelectronic oscillator (OEO) / chaotic output / time-delay signature (TDS) / optical feedback
[1] |
Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 2005, 438(7066): 343–346
CrossRef
Pubmed
Google scholar
|
[2] |
Hong Y H, Lee M W, Paul J, Spencer P S, Shore K A. GHz bandwidth message transmission using chaotic vertical-cavity surface-emitting lasers. Journal of Lightwave Technology, 2009, 27(22): 5099–5105
CrossRef
Google scholar
|
[3] |
Chiarello F, Ursini L, Santagiustina M. Securing wireless infrared communications through optical chaos. IEEE Photonics Technology Letters, 2011, 23(9): 564–566
CrossRef
Google scholar
|
[4] |
Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P. Fast physical random bit generation with chaotic semiconductor lasers. Nature Photonics, 2008, 2(12): 728–732
CrossRef
Google scholar
|
[5] |
Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M. An optical ultrafast random bit generator. Nature Photonics, 2010, 4(1): 58–61
CrossRef
Google scholar
|
[6] |
Sakuraba R, Iwakawa K, Kanno K, Uchida A. Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. Optics Express, 2015, 23(2): 1470–1490
CrossRef
Pubmed
Google scholar
|
[7] |
Wang Y C, Wang B J, Wang A B. Chaotic correlation optical time domain reflectometer utilizing laser diode. IEEE Photonics Technology Letters, 2008, 20(19): 1636–1638
CrossRef
Google scholar
|
[8] |
Wang A B, Wang N, Yang Y B, Wang B J, Zhang M J, Wang Y C. Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser. Journal of Lightwave Technology, 2012, 30(21): 3420–3426
CrossRef
Google scholar
|
[9] |
Lin F Y, Liu J M. Chaotic radar using nonlinear laser dynamics. IEEE Journal of Quantum Electronics, 2004, 40(6): 815–820
CrossRef
Google scholar
|
[10] |
Lin F Y, Liu J M. Chaotic lidar. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 991–997
CrossRef
Google scholar
|
[11] |
Wu W T, Liao Y H, Lin F Y. Noise suppressions in synchronized chaos lidars. Optics Express, 2010, 18(25): 26155–26162
CrossRef
Pubmed
Google scholar
|
[12] |
Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S. Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view. IEEE Journal of Quantum Electronics, 2009, 45(7): 879–891
CrossRef
Google scholar
|
[13] |
Wu J G, Xia G Q, Wu Z M. Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback. Optics Express, 2009, 17(22): 20124–20133
CrossRef
Pubmed
Google scholar
|
[14] |
Zhang L, Pan B, Chen G, Guo L, Lu D, Zhao L, Wang W. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Scientific Reports, 2017, 7(1): 45900
CrossRef
Pubmed
Google scholar
|
[15] |
Masoller C. Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback. Physical Review Letters, 2001, 86(13): 2782–2785
CrossRef
Pubmed
Google scholar
|
[16] |
Zhong D, Yang G, Xiao Z, Ding Y, Xi J, Zeng N, Yang H. Optical chaotic data-selection logic operation with the fast response for picosecond magnitude. Optics Express, 2019, 27(16): 23357–23367
CrossRef
Pubmed
Google scholar
|
[17] |
Chen J J, Duan Y N, Li L F, Zhong Z Q. Wideband polarization-resolved chaos with time-delay signature suppression in VCSELs subject to dual chaotic optical injections. IEEE Access: Practical Innovations, Open Solutions, 2018, 6: 66807–66815
CrossRef
Google scholar
|
[18] |
Abarbanel H D I, Kennel M B, Illing L, Tang S, Chen H F, Liu J M. Synchronization and communication using semiconductor lasers with optoelectronic feedback. IEEE Journal of Quantum Electronics, 2001, 37(10): 1301–1311
CrossRef
Google scholar
|
[19] |
Liao J F, Sun J Q. Polarization dynamics and chaotic synchronization in unidirectionally coupled VCSELs subjected to optoelectronic feedback. Optics Communications, 2013, 295: 188–196
CrossRef
Google scholar
|
[20] |
Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties. IEEE Journal of Quantum Electronics, 1980, 16(3): 347–355
CrossRef
Google scholar
|
[21] |
Larger L, Lee M W, Goedgebuer J P, Elflein W, Erneux T. Chaos in coherence modulation: bifurcations of an oscillator generating optical delay fluctuations. Journal of the Optical Society of America. B, Optical Physics, 2001, 18(8): 1063–1068
CrossRef
Google scholar
|
[22] |
Larger L, Dudley J M. Optoelectronic chaos. Nature, 2010, 465(7294): 41–42
CrossRef
Pubmed
Google scholar
|
[23] |
Kouomou Y C, Colet P, Larger L, Gastaud N. Chaotic breathers in delayed electro-optical systems. Physical Review Letters, 2005, 95(20): 203903
CrossRef
Pubmed
Google scholar
|
[24] |
Callan K E, Illing L, Gao Z, Gauthier D J, Schöll E. Broadband chaos generated by an optoelectronic oscillator. Physical Review Letters, 2010, 104(11): 113901
CrossRef
Pubmed
Google scholar
|
[25] |
Ikeda K, Matsumoto K. High-dimensional chaotic behavior in systems with time-delayed feedback. Physica D, Nonlinear Phenomena, 1987, 29(1-2): 223–235
CrossRef
Google scholar
|
[26] |
Murphy T E, Cohen A B, Ravoori B, Schmitt K R B, Setty A V, Sorrentino F, Williams C R S, Ott E, Roy R. Complex dynamics and synchronization of delayed-feedback nonlinear oscillators. Philosophical Transactions of Royal Society A, 2010, 368(1911): 343–366
CrossRef
Pubmed
Google scholar
|
[27] |
Prokhorov M D, Ponomarenko V I, Karavaev A S, Bezruchko B P. Reconstruction of time-delayed feedback systems from time series. Physica D. Nonlinear Phenomena, 2005, 203(3–4): 209–223
CrossRef
Google scholar
|
[28] |
Tang X, Wu Z M, Wu J G, Deng T, Chen J J, Fan L, Zhong Z Q, Xia G Q. Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source. Optics Express, 2015, 23(26): 33130–33141
CrossRef
Pubmed
Google scholar
|
[29] |
Hizanidis J, Deligiannidis S, Bogris A, Syvridis D. Enhancement of chaos encryption potential by combining all-optical and electrooptical chaos generators. IEEE Journal of Quantum Electronics, 2010, 46(11): 1642–1649
CrossRef
Google scholar
|
[30] |
Gao X, Cheng M, Deng L, Liu L, Hu H, Liu D. A novel chaotic system with suppressed time-delay signature based on multiple electro-optic nonlinear loops. Nonlinear Dynamics, 2015, 82(1–2): 611–617
CrossRef
Google scholar
|
[31] |
Liu L F, Miao S X, Cheng M F, Gao X J. Two-dimensional coupled electro-optic delayed feedback system with varying parameters. Journal of Modern Optics, 2017, 64(6): 547–554
CrossRef
Google scholar
|
[32] |
Hu H P, Shi S Y, Xie F L. Electro-optic intensity chaotic system with an extra optical feedback. Optics Communications, 2017, 402: 140–146
CrossRef
Google scholar
|
[33] |
Rontani D, Locquet A, Sciamanna M, Citrin D S. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Optics Letters, 2007, 32(20): 2960–2962
CrossRef
Pubmed
Google scholar
|
[34] |
Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series. Physical Review Letters, 2002, 88(17): 174102
CrossRef
Pubmed
Google scholar
|
[35] |
Soriano M C, Zunino L, Rosso O A, Fischer I, Mirasso C R. Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis. IEEE Journal of Quantum Electronics, 2011, 47(2): 252–261
CrossRef
Google scholar
|
[36] |
Li N, Pan W, Xiang S, Zhao Q, Zhang L, Mu P. Quantifying the complexity of the chaotic intensity of an external-cavity semiconductor laser via sample entropy. IEEE Journal of Quantum Electronics, 2014, 50(9): 766–773
|
[37] |
Zunino L, Rosso O A, Soriano M C. Characterizing the hyperchaotic dynamics of a semiconductor laser subject to optical feedback via permutation entropy. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1250–1257
CrossRef
Google scholar
|
[38] |
Lavrov R, Peil M, Jacquot M, Larger L, Udaltsov V, Dudley J. Electro-optic delay oscillator with nonlocal nonlinearity: Optical phase dynamics, chaos, and synchronization. Physical Review. E, 2009, 80(2): 026207
CrossRef
Pubmed
Google scholar
|
[39] |
Lavrov R, Jacquot M, Larger L. Nonlocal nonlinear electro-optic Phase dynamics demonstrating 10 Gbs/s chaos communications. IEEE Journal of Quantum Electronics, 2010, 46(10): 1430–1435
CrossRef
Google scholar
|
/
〈 | 〉 |