Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications
Xinlun CAI, Michael STRAIN, Siyuan YU, Marc SOREL
Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications
Emerging applications based on optical beams carrying orbital angular momentum (OAM) will likely require photonic integrated devices and circuits for miniaturization, improved performance and enhanced functionality. This paper reviews the state-of-the art in the field of OAM of light, reports recent developments in silicon integrated OAM emitters, and discusses the applications potentials and challenges in silicon integrated OAM devices which can be used in future OAM based optical communications systems.
silicon photonics / photonic integrated circuits (PICs) / whispering gallery modes (WGMs) / optical communications
[1] |
Beth R A. Mechanical detection and measurement of the angular momentum of light. Physical Review, 1936, 50(2): 115–125
CrossRef
Google scholar
|
[2] |
Friese M E J, Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 1998, 394(6691): 348–350 doi:10.1038/28566
|
[3] |
Humblet J. Sur le moment d’impulsion d’une onde electromagntique. Physica A, 1943, 10(7): 585–603
|
[4] |
Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A., 1992, 45(11): 8185–8189
CrossRef
Pubmed
Google scholar
|
[5] |
Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P. Helical-wavefront laser beams produced with a spiral phase plate. Optics Communications, 1994, 112(5–6): 321–327
CrossRef
Google scholar
|
[6] |
Bazhenov V Y, Vasnetsov M V, Soskin M S. Laser-beams with screw dislocations in their wavefronts. JETP Letters, 1990, 52(8): 429–431
|
[7] |
Oemrawsingh S S R, van Houwelingen J A W, Eliel E R, Woerdman J P, Verstegen E J, Kloosterboer J G, ’t Hooft G W. Production and characterization of spiral phase plates for optical wavelengths. Applied Optics, 2004, 43(3): 688–694
CrossRef
Pubmed
Google scholar
|
[8] |
He H, Friese M E J, Heckenberg N R, Rubinsztein-Dunlop H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Physical Review Letters, 1995, 75(5): 826–829
CrossRef
Pubmed
Google scholar
|
[9] |
O’Neil A T, MacVicar I, Allen L, Padgett M J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Physical Review Letters, 2002, 88(5): 053601
CrossRef
Pubmed
Google scholar
|
[10] |
Paterson L, MacDonald M P, Arlt J, Sibbett W, Bryant P E, Dholakia K. Controlled rotation of optically trapped microscopic particles. Science, 2001, 292(5518): 912–914
CrossRef
Pubmed
Google scholar
|
[11] |
Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456
CrossRef
Pubmed
Google scholar
|
[12] |
Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Physical Review Letters, 2005, 94(15): 153901–153904
CrossRef
Pubmed
Google scholar
|
[13] |
Marrucci L, Manzo C, Paparo D. Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation. Applied Physics Letters, 2006, 88(22): 221102
CrossRef
Google scholar
|
[14] |
Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2008, 25(1): 225–230
CrossRef
Pubmed
Google scholar
|
[15] |
McGloin D, Simpson N B, Padgett M J. Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam. Applied Optics, 1998, 37(3): 469–472
CrossRef
Pubmed
Google scholar
|
[16] |
Kumar R, Singh Mehta D, Sachdeva A, Garg A, Senthilkumaran P, Shakher C. Generation and detection of optical vortices using all fiber-optic system. Optics Communications, 2008, 281(13): 3414–3420
CrossRef
Google scholar
|
[17] |
Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding. Nature Physics, 2008, 4(4): 282–286
CrossRef
Google scholar
|
[18] |
Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412(6844): 313–316
CrossRef
Pubmed
Google scholar
|
[19] |
Molina-Terriza G, Torres J P, Torner L. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Physical Review Letters, 2002, 88(1): 013601 doi:10.1103/PhysRevLett.88.013601
Pubmed
|
[20] |
Vaziri A, Weihs G, Zeilinger A. Experimental two-photon, three-dimensional entanglement for quantum communication. Physical Review Letters, 2002, 89(24): 240401
CrossRef
Pubmed
Google scholar
|
[21] |
Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J. Measuring the orbital angular momentum of a single photon. Physical Review Letters, 2002, 88(25 Pt 1): 257901
CrossRef
Pubmed
Google scholar
|
[22] |
Barreiro J T, Langford N K, Peters N A, Kwiat P G. Generation of hyperentangled photon pairs. Physical Review Letters, 2005, 95(26): 260501
CrossRef
Pubmed
Google scholar
|
[23] |
Stütz M, Gröblacher S, Jennewein T, Zeilinger A. How to create and detect N-dimensional entangled photons with an active phase hologram. Applied Physics Letters, 2007, 90(26): 261114
CrossRef
Google scholar
|
[24] |
Nagali E, Sciarrino F, De Martini F, Marrucci L, Piccirillo B, Karimi E, Santamato E. Quantum information transfer from spin to orbital angular momentum of photons. Physical Review Letters, 2009, 103(1): 013601
CrossRef
Pubmed
Google scholar
|
[25] |
Nagali E, Sciarrino F, De Martini F, Piccirillo B, Karimi E, Marrucci L, Santamato E. Polarization control of single photon quantum orbital angular momentum states. Optics Express, 2009, 17(21): 18745–18759
CrossRef
Pubmed
Google scholar
|
[26] |
Nagali E, Sansoni L, Sciarrino F, De Martini F, Marrucci L, Piccirillo B, Karimi E, Santamato E. Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence. Nature Photonics, 2009, 3(12): 720–723
CrossRef
Google scholar
|
[27] |
Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters, 2002, 27(21): 1875–1877
CrossRef
Pubmed
Google scholar
|
[28] |
Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters, 2002, 27(13): 1141–1143
CrossRef
Pubmed
Google scholar
|
[29] |
Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 2006, 96(16): 163905
CrossRef
Pubmed
Google scholar
|
[30] |
Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters, 2002, 27(21): 1875–1877
CrossRef
Pubmed
Google scholar
|
[31] |
Bomzon Z, Kleiner V, Hasman E. Pancharatnam—Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Optics Letters, 2001, 26(18): 1424–1426
CrossRef
Pubmed
Google scholar
|
[32] |
Niv A, Biener G, Kleiner V, Hasman E. Manipulation of the Pancharatnam phase in vectorial vortices. Optics Express, 2006, 14(10): 4208–4220
CrossRef
Pubmed
Google scholar
|
[33] |
Moreno I, Davis J A, Ruiz I, Cottrell D M. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Optics Express, 2010, 18(7): 7173–7183
CrossRef
Pubmed
Google scholar
|
[34] |
Fontaine N K, Doerr C R, Buhl L. Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits. In: Proceedings of Optical Fiber Communication Conference, 2012, paper OTu1l.2
|
[35] |
Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496
CrossRef
Google scholar
|
[36] |
Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548
CrossRef
Pubmed
Google scholar
|
[37] |
Su T, Scott R P, Djordjevic S S, Fontaine N K, Geisler D J, Cai X, Yoo S J. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Optics Express, 2012, 20(9): 9396–9402
CrossRef
Pubmed
Google scholar
|
[38] |
Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366
CrossRef
Pubmed
Google scholar
|
[39] |
Matsko A B, Savchenkov A A, Strekalov D, Maleki L. Whispering gallery resonators for studying orbital angular momentum of a photon. Physical Review Letters, 2005, 95(14): 143904
CrossRef
Pubmed
Google scholar
|
[40] |
Cai X, Huang D, Zhang X. Numerical analysis of polarization splitter based on vertically coupled microring resonator. Optics Express, 2006, 14(23): 11304–11311
CrossRef
Pubmed
Google scholar
|
[41] |
Yue Y, Huang H, Ahmed N, Yan Y, Ren Y, Xie G, Rogawski D, Tur M, Willner A E. Reconfigurable switching of orbital-angular-momentum-based free-space data channels. Optics Letters, 2013, 38(23): 5118–5121
CrossRef
Pubmed
Google scholar
|
[42] |
Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362
CrossRef
Google scholar
|
[43] |
Strain M J, Cai X, Wang J, Zhu J, Phillips D B, Chen L, Lopez-Garcia M, O’Brien J L, Thompson M G, Sorel M, Yu S. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nature Communications, 2014, 5: 4856
CrossRef
Pubmed
Google scholar
|
[44] |
Li H, Strain M J, Meriggi L, Chen L, Zhu J, Cicek K, Wang J, Cai X, Sorel M, Thompson M G, Yu S. Pattern manipulation via on-chip phase modulation between orbital angular momentum beams. Applied Physics Letters, 2015, 107(5): 051102
CrossRef
Google scholar
|
/
〈 | 〉 |