GaAs-based polarization modulators for microwave photonic applications

Yu XIANG, Shilong PAN

PDF(300 KB)
PDF(300 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (3) : 497-507. DOI: 10.1007/s12200-016-0561-z
REVIEW ARTICLE
REVIEW ARTICLE

GaAs-based polarization modulators for microwave photonic applications

Author information +
History +

Abstract

GaAs-based polarization modulators (PolMs) exhibit the unique characteristic of simultaneous intensity and complementary phase modulation owing to the linear electro-optic (LEO) effect determined by crystallographic orientations of the device. In this paper, we reviewed the principle of operation, the design and fabrication flows of a GaAs-based PolM. Analytical models are established, from which the features of a PolM are derived and discussed in detail. The recent advances in PolM-based multifunctional systems, in particular the PolM-based optoelectronic oscillator (OEO) are demonstrated with an emphasis on the remarkable development of applications for frequency conversion, tunable microwave photonic filter (MPF), optical frequency comb (OFC), arbitrary waveform generation (AWG) and beamforming. Challenges in practical implementation of the PolM-based systems and their promising future are discussed as well.

Keywords

GaAs / polarization modulator (PolM) / optoelectronic oscillator (OEO) / frequency conversion / microwave photonics filter (MPF)

Cite this article

Download citation ▾
Yu XIANG, Shilong PAN. GaAs-based polarization modulators for microwave photonic applications. Front. Optoelectron., 2016, 9(3): 497‒507 https://doi.org/10.1007/s12200-016-0561-z

References

[1]
Seeds A J. Microwave photonics. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 877–887
CrossRef Google scholar
[2]
Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007, 1(6): 319–330
CrossRef Google scholar
[3]
Yao J. Microwave Photonics. Journal of Lightwave Technology, 2009, 27(3): 314–335
CrossRef Google scholar
[4]
Capmany J, Li G, Lim C, Yao J. Microwave photonics: current challenges towards widespread application. Optics Express, 2013, 21(19): 22862–22867
CrossRef Pubmed Google scholar
[5]
Yao J. Photonic generation of microwave arbitrary waveforms. Optics Communications, 2011, 284(15): 3723–3736
CrossRef Google scholar
[6]
Capmany J, Mora J, Gasulla I, Sancho J, Lloret J, Sales S. Microwave photonic signal processing. Journal of Lightwave Technology, 2013, 31(4): 571–586
CrossRef Google scholar
[7]
Pan S, Zhu D, Zhang F Z. Microwave photonics for modern Radar systems. Transactions of Nanjing University of Aeronautics and Astronautics, 2014, 31(3): 219–240
[8]
Sotom M, Benazet B, Kernec A L, Maignan M. Microwave photonic technologies for flexible satellite telecom payloads. In: Proceedings of 35th European Conference on Optical Communication, Vienna, IEEE, 2009, 1–4
[9]
Koonen A M J, Larrode M G, Ng'oma A, Wang K, Yang H, Zheng Y, Tangdiongga E. Perspectives of Radio over fiber technologies. In: Proceedings of Optical Fiber Communication Conference, San Diego, IEEE, 2008, 1–3
[10]
Yamada M, Haraguchi Y. Linewidth broadening of SCH quantum-well lasers enhanced by carrier fluctuation in optical guiding layer. IEEE Journal of Quantum Electronics, 1987, 23(6): 1054–1058
[11]
Olsen C M, Izadpanah H, Lin C. Wavelength chirp in a high-kL quarter-wave-shifted DFB laser: characterization and influence on system performance. Journal of Lightwave Technology, 1990, 8(12): 1810–1815
CrossRef Google scholar
[12]
Jungerman R L, Johnsen C, McQuate D J, Salomaa K, Zurakowski M P, Bray R C, Conrad G, Cropper D, Hernday P. High-speed optical modulator for application in instrumentation. Journal of Lightwave Technology, 1990, 8(9): 1363–1370
CrossRef Google scholar
[13]
Wang S Y, Lin S H. High speed III–V electrooptic waveguide modulators at l=1.3 mm. Journal of Lightwave Technology, 1988, 6(6): 758–771
CrossRef Google scholar
[14]
Wood T H. Multiple quantum well (MQW) waveguide modulators. Journal of Lightwave Technology, 1988, 6(6): 743–757
CrossRef Google scholar
[15]
Chaciński M, Westergren U, Stoltz B, Thylén L, Schatz R, Hammerfeldt S. Monolithically Integrated 100 GHz DFB-TWEAM. Journal of Lightwave Technology, 2009, 27(16): 3410–3415
CrossRef Google scholar
[16]
Ueda Y, Fujisawa T, Kanazawa S, Kobayashi W, Takahata K, Ishii H. Very-low-voltage operation of Mach-Zehnder interferometer-type electroabsorption modulator using asymmetric couplers. Optics Express, 2014, 22(12): 14610–14616
CrossRef Pubmed Google scholar
[17]
Wu T H, Chiu Y J, Lin F Z. High-speed (60 GHz) and low-voltage-driving electroabsorption modulator using two-consecutive-steps selective-undercut-wet-etching waveguide. IEEE Photonics Technology Letters, 2008, 20(14): 1261–1263
CrossRef Google scholar
[18]
Liu A, Liao L, Rubin D, Nguyen H, Ciftcioglu B, Chetrit Y, Izhaky N, Paniccia M. High-speed optical modulation based on carrier depletion in a silicon waveguide. Optics Express, 2007, 15(2): 660–668
CrossRef Pubmed Google scholar
[19]
Spickermann R, Sakamoto S R, Peters M G, Dagli N. GaAs/AlGaAs travelling wave electro-optic modulator with an electrical bandwidth>40 GHz. Electronics Letters, 1996, 32(12): 1095–1096
CrossRef Google scholar
[20]
Koren U, Koch T L, Presting H, Miller B I. InGaAs/InP multiple quantum well waveguide phase modulator. Applied Physics Letters, 1987, 50(7): 368–370
CrossRef Google scholar
[21]
Noguchi K, Mitomi O, Miyazawa H. Millimeter-wave Ti:LiNbO3 optical modulators. Journal of Lightwave Technology, 1998, 16(4): 615–619
CrossRef Google scholar
[22]
Lee M, Katz H E, Erben C, Gill D M, Gopalan P, Heber J D, McGee D J. Broadband modulation of light by using an electro-optic polymer. Science, 2002, 298(5597): 1401–1403
CrossRef Pubmed Google scholar
[23]
Walker R G. High speed electrooptic modulation in GaAs/GaAlAs waveguide devices. Journal of Lightwave Technology, 1987, 5(10): 1444–1453
CrossRef Google scholar
[24]
Walker R G. Broadband (6 GHz) GaAs/AlGaAs electro-optic modulator with low drive power. Applied Physics Letters, 1989, 54(17): 1613–1615
CrossRef Google scholar
[25]
Walker R G, Bennion I, Carter A C. Low-voltage, 50 W, GaAs/AlGaAs travelling-wave modulator with bandwidth exceeding 25 GHz. Electronics Letters, 1989, 25(23): 1549–1550
CrossRef Google scholar
[26]
Walker R G. High-speed III–V semiconductor intensity modulators. IEEE Journal of Quantum Electronics, 1991, 27(3): 654–667
CrossRef Google scholar
[27]
Lin S H, Wang S Y, Houng Y M. GaAs pin electro-optic travelling-wave modulator at 1.3 mm. Electronics Letters, 1986, 22(18): 934–935
CrossRef Google scholar
[28]
Wang S Y, Lin S H, Houng Y M. GaAs travelling-wave polarization electro-optic waveguide modulator with bandwidth in excess of 20 GHz at 1.3 mm. Applied Physics Letters, 1987, 51(2): 83–85 doi:10.1063/1.98982
[29]
Kim I, Tan M R T, Wang S Y. Analysis of a new microwave low-loss and velocity-matched III–V transmission line for travelling-wave electrooptic modulators. Journal of Lightwave Technology, 1990, 8(5): 728–738
CrossRef Google scholar
[30]
Nees J, Williamson S, Mourou G. 100 GHz travelling-wave electro-optic phase modulator. Applied Physics Letters, 1989, 54(20): 1962–1964
CrossRef Google scholar
[31]
Jaeger N A F, Lee Z K F. Slow-wave electrode for use in compound semiconductor electrooptic modulators. IEEE Journal of Quantum Electronics, 1992, 28(8): 1778–1784
CrossRef Google scholar
[32]
Jaeger N A F, Rahmatian F, Kato H, James R, Berolo E, Lee Z K F. Velocity-matched electrodes for compound semiconductor travelling-wave electrooptic modulators: experimental results. IEEE Microwave and Guided Wave Letters, 1996, 6(2): 82–84
CrossRef Google scholar
[33]
Spickermann R, Dagli N. Millimeter wave coplanar slow wave structure on GaAs suitable for use in electro-optic modulators. Electronics Letters, 1993, 29(9): 774–775
CrossRef Google scholar
[34]
Sakamoto S R, Spickermann R, Dagli N. Narrow gap coplanar slow wave electrode for travelling wave electro-optic modulators. Electronics Letters, 1995, 31(14): 1183–1185
CrossRef Google scholar
[35]
Spickermann R, Peters M G, Dagli N. A polarization independent GaAs-AlGaAs electrooptic modulator. IEEE Journal of Quantum Electronics, 1996, 32(5): 764–769 doi:10.1109/3.492998
[36]
Shin J H, Wu S, Dagli N. Bulk undoped GaAs–AlGaAs substrate-removed electrooptic modulators with 3.7-V-cm drive voltage at 1.55 mm. IEEE Photonics Technology Letters, 2006, 18(21): 2251–2253
CrossRef Google scholar
[37]
Shin J H, Chang Y C, Dagli N. 0.3 V drive voltage GaAs/AlGaAs substrate removed Mach-Zehnder intensity modulators. Applied Physics Letters, 2008, 92(20): 201103, 201103–3
CrossRef Google scholar
[38]
Rahmatian F, Jaeger N A F, James R, Berolo E. An ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar electrodes. IEEE Photonics Technology Letters, 1998, 10(5): 675–677 doi:10.1109/68.669244
[39]
Grossard N, Forte H, Vilcot J P, Beche B, Goedgebuer J P. AlGaAs-GaAs polarization converter with electrooptic phase mismatch control. IEEE Photonics Technology Letters, 2001, 13(8): 830–832
CrossRef Google scholar
[40]
Bull J D, Jaeger N A F, Kato H, Fairburn M, Reid A, Ghanipour P. 40 GHz electro-optic polarization modulator for fiber optic communications systems. Proceedings of the Society for Photo-Instrumentation Engineers, 2004, 5577: 133–143
CrossRef Google scholar
[41]
Yariv A. Introduction to Optical Electronics. 2nd ed. New York: Holt, Rinehart, and Winston, 1976
[42]
Khazaei H R, Berolo O, James R, Wang W J, Maigné P, Young M, Ozard K, Reeves M, Ghannouchi F M. Charge carrier effect on the microwave losses observed on traveling-wave electrodes used in electro-optic modulators. Microwave and Optical Technology Letters, 1998, 17(4): 236–241 doi:10.1002/(SICI)1098-2760(199803)17:4<236::AID-MOP4>3.0.CO;2-J
[43]
Kiziloglu K, Dagli N, Matthaei G L, Long S I. Experimental analysis of transmission line parameters in high-speed GaAs digital circuit interconnects. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(8): 1361–1367
CrossRef Google scholar
[44]
Colin R E. Foundation for Microwave Engineering. 2nd ed. Hoboken: John Wiley & Sons, 2007
[45]
Yao X S, Maleki L. High frequency optical subcarrier generator. Electronics Letters, 1994, 30(18): 1525–1526
[46]
Zhang H, Pan S, Huang M, Chen X. Polarization-modulated analog photonic link with compensation of the dispersion-induced power fading. Optics Letters, 2012, 37(5): 866–868
CrossRef Pubmed Google scholar
[47]
Pan S, Yao J. A frequency-doubling optoelectronic oscillator using a polarization modulator. IEEE Photonics Technology Letters, 2009, 21(13): 929–931
CrossRef Google scholar
[48]
Pan S, Yao J. Tunable subterahertz wave generation based on photonic sextupling using a polarization modulator and a wavelength fixed notch filter. IEEE Transactions on Microwave Theory and Techniques, 2000, 58(7): 1967–1975
[49]
Zhu D, Pan S, Ben D. Tunable frequency-quadrupling dual-loop optoelectronic oscillator. IEEE Photonics Technology Letters, 2012, 24(3): 194–196
CrossRef Google scholar
[50]
Zhu D, Liu S, Pan S. Multichannel up-conversion based on polarization –modulated optoelectronic oscillator. IEEE Photonics Technology Letters, 2014, 26(6): 544–547
CrossRef Google scholar
[51]
Zhu D, Pan S, Cai S, Ben D. High-performance photonic microwave downconverter based on a frequency-doubling optoelectronic oscillator. Journal of Lightwave Technology, 2012, 30(18): 3036–3042
CrossRef Google scholar
[52]
Tang Z, Pan S. Transmission of 3-Gb/s uncompressed HD video in an optoelectronic-oscillator-based radio over fiber link. In: Proceeding of Radio and Wireless Symposium, Austin, IEEE, 2013, 319–321
[53]
Li W, Zhang W, Yao J. Frequency-hopping microwave waveform generation based on a frequency-tunable optoelectronic oscillator. In: Proceeding of Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, IEEE, 2014, 1–3
[54]
Jiang Z, Huang C B, Leaird D E, Weiner A M. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nature Photonics, 2007, 1(8): 463–467
CrossRef Google scholar
[55]
Chen C, Zhang F, Pan S. Generation of seven-line optical frequency comb based on a single polarization modulator. IEEE Photonics Technology Letters, 2013, 25(22): 2164–2166
CrossRef Google scholar
[56]
Li W, Wang W T, Sun W H, Wang L X, Liu J G, Zhu N H. Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer. IEEE Photonics Journal, 2014, 6(2): 1–8
CrossRef Google scholar
[57]
He C, Pan S, Guo R, Zhao Y, Pan M. Ultraflat optical frequency comb generated based on cascaded polarization modulators. Optics Letters, 2012, 37(18): 3834–3836
CrossRef Pubmed Google scholar
[58]
Wang M, Yao J. Tunable optical frequency comb generation based on an optoelectronic oscillator. IEEE Photonics Technology Letters, 2013, 25(21): 2035–2038 doi:10.1109/LPT.2013.2280666
[59]
Tang Z, Pan S, Zhu D, Guo R, Zhao Y, Pan M, Ben D, Yao J. Tunable optoelectronic oscillator based on a polarization modulator and a chirped FBG. IEEE Photonics Technology Letters, 2012, 24(17): 1487–1489
CrossRef Google scholar
[60]
Zhang Y, Pan S. Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter. IEEE Photonics Technology Letters, 2013, 25(2): 187–189
CrossRef Google scholar
[61]
Zhang Y, Wu H, Zhu D, Pan S. An optically controlled phased array antenna based on single sideband polarization modulation. Optics Express, 2014, 22(4): 3761–3765 doi:10.1364/OE.22.003761
Pubmed

Acknowledgements

This work was supported in part by the National Basic Research Program of China (No. 2012CB315705), the National Natural Science Foundation of China (Grant Nos. 61422108 and 61527820), Fundamental Research Funds for the Central Universities (Nos. NP2015404, NE2012002); and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(300 KB)

Accesses

Citations

Detail

Sections
Recommended

/