Asymmetric directional couplers based on silicon nanophotonic waveguides and applications
Daoxin DAI, Shipeng WANG
Asymmetric directional couplers based on silicon nanophotonic waveguides and applications
Directional couplers (DCs) have been playing an important role as a basic element for realizing power exchange. Previously most work was focused on symmetric DCs and little work was reported for asymmetric directional couplers (ADCs). In recently years, silicon nanophotonic waveguides with ultra-high index contrast and ultra-small cross section have been developed very well and it has been shown that ADCs based on silicon-on-insulator (SOI) nanophotonic waveguides have some unique ability for polarization-selective coupling as well as mode-selective coupling, which are respectively very important for polarization-related systems and mode-division-mulitplexing systems. In this paper, a review is given for the recent progresses on silicon-based ADCs and the applications for power splitting, polarization beam splitting, as well as mode conversion/(de)multiplexing.
silicon photonics / asymmetric directional couplers (ADCs) / polarization-division multiplexing (PDM) / mode-division multiplexing (MDM) / polarization beam splitter (PBSs)
[1] |
Fukuda H, Yamada K, Tsuchizawa T, Watanabe T, Shinojima H, Itabashi S. Ultrasmall polarization splitter based on silicon wire waveguides. Optics Express, 2006, 14(25): 12401–12408
CrossRef
Pubmed
Google scholar
|
[2] |
Shi Y, Anand S, He S. Design of a polarization insensitive triplexer using directional couplers based on submicron silicon Rib waveguides. Journal of Lightwave Technology, 2009, 27(11): 1443–1447
CrossRef
Google scholar
|
[3] |
Okamoto K. Fundamentals of Optical Waveguides.New York: Academic Press, 2010
|
[4] |
Haus H A, Huang W P, Kawakami S, Whitaker N. Coupled-mode theory of optical waveguides. Journal of Lightwave Technology, 1987, 5(1): 16–23
CrossRef
Google scholar
|
[5] |
Wagner R E, Cheng J. Electrically controlled optical switch for multimode fiber applications. Applied Optics, 1980, 19(17): 2921–2925
CrossRef
Pubmed
Google scholar
|
[6] |
Schmidt R V, Alferness R C. Directional coupler switches, modulators, and filters using alternating Db techniques. IEEE Transactions on Circuits and Systems, 1979, 26(12): 1099–1108
CrossRef
Google scholar
|
[7] |
Kogelnik H, Schmidt R V. Switched directional couplers with alternating Db. IEEE Journal of Quantum Electronics, 1976, 12(7): 396–401
CrossRef
Google scholar
|
[8] |
Paniccia M J. A perfect marriage: optics and silicon. Optik & Photonik, 2011, 6(2): 34–38
|
[9] |
Bogaerts W, Selvaraja S K, Dumon P, Brouckaert J, De Vos K, Van Thourhout D, Baets R. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 33–44
CrossRef
Google scholar
|
[10] |
Bogaerts W, Dumon P, Van Thourhout D, Taillaert D, Jaenen P, Wouters J, Beckx S, Wiaux V, Baets R. Compact wavelength-selective functions in silicon-on-insulator photonic wires. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1394–1401
CrossRef
Google scholar
|
[11] |
Sasaki K, Ohno F, Motegi A, Baba T. Arrayed waveguide grating of 70× 60 µm2 size based on Si photonic wire waveguides. Electronics Letters, 2005, 41(14): 801–802
CrossRef
Google scholar
|
[12] |
Bogaerts W, Dumon P, Van Thourhout D, Taillaert D, Jaenen P, Wouter J, Beckx S, Wiaux V, Baets R G. Compact wavelength-selective functions in silicon-on-insulator photonic wires. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1394–1401
CrossRef
Google scholar
|
[13] |
Soltani M, Yegnanarayanan S, Adibi A. Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics. Optics Express, 2007, 15(8): 4694–4704
CrossRef
Pubmed
Google scholar
|
[14] |
Li C, Zhou L, Poon A W. Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling. Optics Express, 2007, 15(8): 5069–5076
CrossRef
Pubmed
Google scholar
|
[15] |
Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M. A continuous-wave Raman silicon laser. Nature, 2005, 433(7027): 725–728
CrossRef
Pubmed
Google scholar
|
[16] |
Xu Q, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435(7040): 325–327
CrossRef
Pubmed
Google scholar
|
[17] |
Barrios C A, Almeida V R, Panepucci R, Lipson M. Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices. Journal of Lightwave Technology, 2003, 21(10): 2332–2339
CrossRef
Google scholar
|
[18] |
Tang Y, Chen H W, Jain S, Peters J D, Westergren U, Bowers J E. 50 Gb/s hybrid silicon traveling-wave electroabsorption modulator. Optics Express, 2011, 19(7): 5811–5816
CrossRef
Pubmed
Google scholar
|
[19] |
Dai D, Liu L, Wosinski L, He S. Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-SOI nanowire waveguides. Electronics Letters, 2006, 42(7): 400–402
CrossRef
Google scholar
|
[20] |
Fukuda H, Yamada K, Tsuchizawa T, Watanabe T, Shinojima H, Itabashi S. Silicon photonic circuit with polarization diversity. Optics Express, 2008, 16(7): 4872–4880
CrossRef
Pubmed
Google scholar
|
[21] |
Vermeulen D, Van Acoleyen K, Ghosh S, Selvaraja S, De Cort W, Yebo N, Hallynck E, De Vos K, Debackere P, Dumon P, Bogaerts W, Roelkens G, Van Thourhout D, Baets R. Efficient tapering to the fundamental quasi-TM mode in asymmetrical waveguides. In: Proceedings of European Conference on Integrated Optics (ECIO), United Kingdom, 2010. Paper Wep16
|
[22] |
Dai D, Bowers J E. Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires. Optics Express, 2011, 19(11): 10940–10949
CrossRef
Pubmed
Google scholar
|
[23] |
Dai D, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light, Science & Applications, 2012, 1(3): e1
CrossRef
Google scholar
|
[24] |
Dai D, Liu L, Gao S, Xu D, He S. Polarization management for silicon photonic integrated circuits. Laser & Photonics Reviews, 2013, 7(3): 303–328
CrossRef
Google scholar
|
[25] |
Augustin L M, Van der Tol J J G M, Hanfoug R, de Laat W J M, Van de Moosdijk M J E, Van Dijk P W L, Oei Y, Smit M K. A single etch-step fabrication-tolerant polarization splitter. Journal of Lightwave Technology, 2007, 25(3): 740–746
CrossRef
Google scholar
|
[26] |
Liang T K, Tsang H K. Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides. IEEE Photonics Technology Letters, 2005, 17(2): 393–395
CrossRef
Google scholar
|
[27] |
Augustin L M, Hanfoug R, Van der Tol J, de Laat W J M, Smit M K. A compact integrated polarization splitter/converter in InGaAsP-InP. IEEE Photonics Technology Letters, 2007, 19(17): 1286–1288
CrossRef
Google scholar
|
[28] |
Hong J M, Ryu H H, Park S R, Jeong J W, Gol L S, Lee E H, Park S G, Woo D, Kim S O B H. Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application. IEEE Photonics Technology Letters, 2003, 15(1): 72–74
CrossRef
Google scholar
|
[29] |
Jiao Y, Dai D, Shi Y, He S. Shortened polarization beam splitters with two cascaded multimode interference sections. IEEE Photonics Technology Letters, 2009, 21(20): 1538–1540
CrossRef
Google scholar
|
[30] |
Tu Z, Huang Y W, Yi H X, Wang X J, Li Y P, Li L, Hu W W.A compact SOI polarization beam splitter based on multimode interference coupler. Proceedings of SPIE-The International Society for Optical Engineering, 2011, 8307(1):1–6
|
[31] |
Yang B K, Shin S Y, Zhang D. Ultrashort polarization splitter using two-mode interference in silicon photonic wires. IEEE Photonics Technology Letters, 2009, 21(7): 432–434
CrossRef
Google scholar
|
[32] |
Kiyat I, Aydinli A, Dagli N. A compact silicon-on-insulator polarization splitter. IEEE Photonics Technology Letters, 2005, 17(1): 100–102
CrossRef
Google scholar
|
[33] |
Xiao J, Liu X, Sun X. Design of a compact polarization splitter in horizontal multiple-slotted waveguide structures. Japanese Journal of Applied Physics, 2008, 47(5R): 3748–3754
|
[34] |
Tu X, Ang S S N, Chew A B, Teng J, Mei T. An ultracompact directional coupler based on gaas cross-slot waveguide. IEEE Photonics Technology Letters, 2010, 22(17): 1324–1326
CrossRef
Google scholar
|
[35] |
Yamazaki T, Aono H, Yamauchi J, Nakano H. Coupled waveguide polarization splitter with slightly different core widths. Journal of Lightwave Technology, 2008, 26(21): 3528–3533
CrossRef
Google scholar
|
[36] |
Yue Y, Zhang L, Yang J Y, Beausoleil R G, Willner A E. Silicon-on-insulator polarization splitter using two horizontally slotted waveguides. Optics Letters, 2010, 35(9): 1364–1366
CrossRef
Pubmed
Google scholar
|
[37] |
Shi Y, Dai D, He S. Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler. IEEE Photonics Technology Letters, 2007, 19(11): 825–827
CrossRef
Google scholar
|
[38] |
Ao X, Liu L, Wosinski L, He S. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type. Applied Physics Letters, 2006, 89(17): 171115
CrossRef
Google scholar
|
[39] |
Dai D. Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides. Journal of Lightwave Technology, 2012, 30(20): 3281–3287
CrossRef
Google scholar
|
[40] |
Dai D, Bowers J E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Optics Express, 2011, 19(19): 18614–18620
CrossRef
Pubmed
Google scholar
|
[41] |
Wang J, Liang D, Tang Y, Dai D, Bowers J E. Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler. Optics Letters, 2013, 38(1): 4–6
CrossRef
Pubmed
Google scholar
|
[42] |
Komatsu M A, Saitoh K, Koshiba M. Design of miniaturized silicon wire and slot waveguide polarization splitter based on a resonant tunneling. Optics Express, 2009, 17(21): 19225–19233
CrossRef
Pubmed
Google scholar
|
[43] |
Dai D, Wang Z, Bowers J E. Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler. Optics Letters, 2011, 36(13): 2590–2592
CrossRef
Pubmed
Google scholar
|
[44] |
Lin S, Hu J, Crozier K B. Ultracompact, broadband slot waveguide polarization splitter. Applied Physics Letters, 2011, 98(15): 151101
CrossRef
Google scholar
|
[45] |
Lou F, Dai D, Wosinski L. Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler. Optics Letters, 2012, 37(16): 3372–3374
CrossRef
Pubmed
Google scholar
|
[46] |
Chee J, Zhu S, Lo G Q. CMOS compatible polarization splitter using hybrid plasmonic waveguide. Optics Express, 2012, 20(23): 25345–25355
CrossRef
Pubmed
Google scholar
|
[47] |
Guan X, Wu H, Shi Y, Wosinski L, Dai D. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Optics Letters, 2013, 38(16): 3005–3008
CrossRef
Pubmed
Google scholar
|
[48] |
Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
CrossRef
Pubmed
Google scholar
|
[49] |
Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653
CrossRef
Pubmed
Google scholar
|
[50] |
Song Y, Wang J, Li Q, Yan M, Qiu M. Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. Optics Express, 2010, 18(12): 13173–13179
CrossRef
Pubmed
Google scholar
|
[51] |
Dai D. Silicon mode-(de) multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light. In: Proceedings of Communications And Photonics Conference (ACP), IEEE, 2012, 1–3
|
[52] |
Little B E, Chu S T, Absil P P, Hryniewicz J V, Johnson F G, Seiferth F, Gill D, Van V, King O, Trakalo M. Very high-order microring resonator filters for WDM applications. IEEE Photonics Technology Letters, 2004, 16(10): 2263–2265
CrossRef
Google scholar
|
[53] |
Luo X, Song J, Feng S, Poon A W, Liow T Y, Yu M, Lo G Q, Kwong D L. Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects. IEEE Photonics Technology Letters, 2012, 24(10): 821–823
CrossRef
Google scholar
|
[54] |
Tobing L Y M, Dumon P, Baets R, Chin M K. Boxlike filter response based on complementary photonic bandgaps in two-dimensional microresonator arrays. Optics Letters, 2008, 33(21): 2512–2514
CrossRef
Pubmed
Google scholar
|
[55] |
Melloni A. Synthesis of a parallel-coupled ring-resonator filter. Optics Letters, 2001, 26(12): 917–919
CrossRef
Pubmed
Google scholar
|
[56] |
Little B E, Chu S T, Haus H A, Foresi J, Laine J P. Microring resonator channel dropping filters. Journal of Lightwave Technology, 1997, 15(6): 998–1005
|
[57] |
Xia F, Rooks M, Sekaric L, Vlasov Y. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Optics Express, 2007, 15(19): 11934–11941
CrossRef
Pubmed
Google scholar
|
[58] |
Bachmann M, Besse P A, Melchior H. General self-imaging properties in N × N multimode interference couplers including phase relations. Applied Optics, 1994, 33(18): 3905–3911
CrossRef
Pubmed
Google scholar
|
[59] |
Chen P, Chen S, Guan X, Shi Y, Dai D. High-order microring resonators with bent couplers for a box-like filter response. Optics Letters, 2014, 39(21): 6304–6307
CrossRef
Pubmed
Google scholar
|
[60] |
Morino H, Maruyama T, Iiyama K. Reduction of wavelength dependence of coupling characteristics using si optical waveguide curved directional coupler. Journal of Lightwave Technology, 2014, 32(12): 2188–2192
CrossRef
Google scholar
|
[61] |
Xia F, Sekaric L, Vlasov Y A. Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators. Optics Express, 2006, 14(9): 3872–3886
CrossRef
Pubmed
Google scholar
|
[62] |
Soldano L B, de Vreede A I, Smit M K, Verbeek B H, Metaal E G, Groen F H. Mach-Zehnder interferometer polarization splitter in InGaAsP/InP. IEEE Photonics Technology Letters, 1994, 6(3): 402–405
CrossRef
Google scholar
|
[63] |
Tang Y, Dai D, He S. Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits. IEEE Photonics Technology Letters, 2009, 21(4): 242–244
CrossRef
Google scholar
|
[64] |
Alam M Z, Meier J, Aitchison J S, Mojahedi M.Super mode propagation in low index medium. In: Proceeding of Photonic Applications Systems Technologies Conference, Optical Society of America, 2007, Jthd112
|
[65] |
Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics, 2008, 2(8): 496–500
CrossRef
Google scholar
|
[66] |
Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461(7264): 629–632
CrossRef
Pubmed
Google scholar
|
[67] |
Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode oof metal-dielectric-gap optical waveguides. IEEE Photonics Technology Letters, 2009, 21(6): 362–364
CrossRef
Google scholar
|
[68] |
Sorin W V, Kim B Y, Shaw H J. Highly selective evanescent modal filter for two-mode optical fibers. Optics Letters, 1986, 11(9): 581–583
CrossRef
Pubmed
Google scholar
|
[69] |
Li A, Chen X, Amin A A, Shieh W. Fused fiber mode couplers for few-mode transmission. IEEE Photonics Technology Letters, 2012, 24(21): 1953–1956
CrossRef
Google scholar
|
[70] |
Fontaine N K, Doerr C R, Mestre M A, Ryf R, Winzer P, Buhl L, Sun Y, Jiang X, Lingle R.Space-division multiplexing and all-optical MIMO demultiplexing using a photonic integrated circuit. In: Proceeding of Optical Fiber Communication Conference, Optical Society of America, 2012, PDP5B. 1
|
[71] |
Wohlfeil B, Stamatiadis C, Zimmermann L, Petermann K.Compact fiber grating coupler on SOI for coupling of higher order fiber modes. In: Proceeding of Optical Fiber Communication Conference, Optical Society of America, 2013, OTh1B. 2
|
[72] |
Ding Y, Ou H, Xu J, Peucheret C. Silicon photonic integrated circuit mode multiplexer. IEEE Photonics Technology Letters, 2013, 25(7): 648–651
CrossRef
Google scholar
|
[73] |
Koonen A M J, Chen H, Van den Boom H P A, Raz O. Silicon photonic integrated mode multiplexer and demultiplexer. IEEE Photonics Technology Letters, 2012, 24(21): 1961–1964
CrossRef
Google scholar
|
[74] |
Uematsu T, Ishizaka Y, Kawaguchi Y, Saitoh K, Koshiba M. Design of a compact two-mode multi/demultiplexer consisting of multi-mode interference waveguides and a wavelength insensitive phase shifter for mode-division multiplexing transmission. Journal of Lightwave Technology, 2012, 30(15): 2421–2426
CrossRef
Google scholar
|
[75] |
Greenberg M, Orenstein M. Multimode add-drop multiplexing by adiabatic linearly tapered coupling. Optics Express, 2005, 13(23): 9381–9387
CrossRef
Pubmed
Google scholar
|
[76] |
Greenberg M Y, Orenstein M.Mode add drop for optical interconnects based on adiabatic high order mode couplers. In: Proceedings of Quantum Electronics and Laser Science Conference, Optical Society of America, 2005, JTuC55
|
[77] |
Xing J, Li Z, Xiao X, Yu J, Yu Y. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Optics Letters, 2013, 38(17): 3468–3470
CrossRef
Pubmed
Google scholar
|
[78] |
Love J D, Vance R W C, Joblin A. Asymmetric, adiabatic multipronged planar splitters. Optical and Quantum Electronics, 1996, 28(4): 353–369
CrossRef
Google scholar
|
[79] |
Lee B T, Shin S Y. Mode-order converter in a multimode waveguide. Optics Letters, 2003, 28(18): 1660–1662
CrossRef
Pubmed
Google scholar
|
[80] |
Low A L Y, Yong Y S, You A H, Chien S F, Teo C F. A five-order mode converter for multimode waveguide. IEEE Photonics Technology Letters, 2004, 16(7): 1673–1675
CrossRef
Google scholar
|
[81] |
Riesen N, Love J D. Spatial mode-division-multiplexing of few-mode fiber. In: Proceedings of European Conference and Exhibition on Optical Communication, Optical Society of America, 2012, P2. 14
|
[82] |
Riesen N, Love J D. Design of mode-sorting asymmetric Y-junctions. Applied Optics, 2012, 51(15): 2778–2783
CrossRef
Pubmed
Google scholar
|
[83] |
Driscoll J B, Grote R R, Souhan B, Dadap J I, Lu M, Osgood R M. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Optics Letters, 2013, 38(11): 1854–1856
CrossRef
Pubmed
Google scholar
|
[84] |
Chen W, Wang P, Yang J. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Optics Express, 2013, 21(21): 25113–25119
CrossRef
Pubmed
Google scholar
|
[85] |
Bagheri S, Green W. Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing. In: Proceedings of 2009 6th IEEE International Conference on Group IV Photonics, 2009
|
[86] |
Dai D, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Optics Letters, 2013, 38(9): 1422–1424
CrossRef
Pubmed
Google scholar
|
[87] |
Hanzawa N, Saitoh K, Sakamoto T, Matsui T, Tsujikawa K, Koshiba M, Yamamoto F. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission. Optics Express, 2013, 21(22): 25752–25760
CrossRef
Pubmed
Google scholar
|
[88] |
Qiu H, Yu H, Hu T, Jiang G, Shao H, Yu P, Yang J, Jiang X. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Optics Express, 2013, 21(15): 17904–17911
CrossRef
Pubmed
Google scholar
|
[89] |
Luo L W, Ophir N, Chen C, Gabrielli L H, Poitras C B, Bergman K, Lipson M. Simultaneous mode and wavelength division multiplexing on-chip. arXiv preprint arXiv:1306.2378, 2013
|
[90] |
Ding Y, Xu J, Da Ros F, Huang B, Ou H, Peucheret C. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Optics Express, 2013, 21(8): 10376–10382
CrossRef
Pubmed
Google scholar
|
[91] |
Wang J, He S, Dai D. On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing. Laser & Photonics Reviews, 2014, 8(2): L18–L22
CrossRef
Google scholar
|
[92] |
Wang J, Chen P, Chen S, Shi Y, Dai D. Improved 8-channel silicon mode demultiplexer with grating polarizers. Optics Express, 2014, 22(11): 12799–12807
CrossRef
Pubmed
Google scholar
|
[93] |
Wang Z, Dai D. Ultrasmall Si-nanowire-based polarization rotator. JOSA B, 2008, 25(5): 747–753
|
[94] |
Wang J, Chen S, Dai D. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Optics Letters, 2014, 39(24): 6993–6996
CrossRef
Pubmed
Google scholar
|
[95] |
Dai D, Wang J, Chen S, Wang S, He S. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength-and mode-division-multiplexing. Laser & Photonics Reviews, 2015, 9(3): 339–344
CrossRef
Google scholar
|
/
〈 | 〉 |