Linear all-optical signal processing using silicon micro-ring resonators

Yunhong DING, Haiyan OU, Jing XU, Meng XIONG, Yi AN, Hao HU, Michael GALILI, Abel Lorences RIESGO, Jorge SEOANE, Kresten YVIND, Leif Katsuo OXENLØWE, Xinliang ZHANG, Dexiu HUANG, Christophe PEUCHERET

PDF(891 KB)
PDF(891 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (3) : 362-376. DOI: 10.1007/s12200-016-0553-z
REVIEW ARTICLE
REVIEW ARTICLE

Linear all-optical signal processing using silicon micro-ring resonators

Author information +
History +

Abstract

Silicon micro-ring resonators (MRRs) are compact and versatile devices whose periodic frequency response can be exploited for a wide range of applications. In this paper, we review our recent work on linear all-optical signal processing applications using silicon MRRs as passive filters. We focus on applications such as modulation format conversion, differential phase-shift keying (DPSK) demodulation, modulation speed enhancement of directly modulated lasers (DMLs), and monocycle pulse generation. The possibility to implement polarization diversity circuits, which reduce the polarization dependence of standard silicon MRRs, is illustrated on the particular example of DPSK demodulation.

Keywords

linear all-optical signal processing / micro-ring resonator (MRR) / polarization diversity / silicon-on-insulator (SOI)

Cite this article

Download citation ▾
Yunhong DING, Haiyan OU, Jing XU, Meng XIONG, Yi AN, Hao HU, Michael GALILI, Abel Lorences RIESGO, Jorge SEOANE, Kresten YVIND, Leif Katsuo OXENLØWE, Xinliang ZHANG, Dexiu HUANG, Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators. Front. Optoelectron., 2016, 9(3): 362‒376 https://doi.org/10.1007/s12200-016-0553-z

References

[1]
Hirano M, Nakanishi T, Okuno T, Onishi M. Silica-based highly nonlinear fibers and their application. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 103–113
CrossRef Google scholar
[2]
Oxenlowe L K, Ji H, Galili M, Pu M, Hu H, Mulvad H C H, Yvind K, Hvam J M, Clausen A T, Jeppesen P. Silicon photonics for signal processing of Tbit/s serial data signals. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(2): 996–1005
CrossRef Google scholar
[3]
Pelusi M D, Ta’eed V G, Fu L, Magi E, Lamont M R E, Madden S, Choi D Y, Bulla D A P, Luther-Davies B, Eggleton B J. Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3): 529–539
CrossRef Google scholar
[4]
Stubkjaer K E. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1428–1435
CrossRef Google scholar
[5]
Langrock C, Kumar S, McGeehan J E, Willner A E, Fejer M M. All-optical signal processing using χ(2) nonlinearities in guided-wave devices. Journal of Lightwave Technology, 2006, 24(7): 2579–2592
CrossRef Google scholar
[6]
Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon microring resonators. Laser & Photonics Reviews, 2012, 6(1): 47–73
CrossRef Google scholar
[7]
Marcatili E A J. Bends in optical dielectric waveguides. Bell System Technical Journal, 1969, 48(7): 2103–2132
CrossRef Google scholar
[8]
Little B E, Chu S T, Haus H A, Foresi J, Laine J P. Microring resonator channel dropping filters. Journal of Lightwave Technology, 1997, 15(6): 998–1005
CrossRef Google scholar
[9]
Krauss T, Laybourn P J R, Roberts J. CW operation of semiconductor ring lasers. Electronics Letters, 1990, 26(25): 2095–2097
CrossRef Google scholar
[10]
Xu Q, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435(7040): 325–327
CrossRef Pubmed Google scholar
[11]
Hill M T, Dorren H J S, De Vries T, Leijtens X J M, Den Besten J H, Smalbrugge B, Oei Y S, Binsma H, Khoe G D, Smit M K. A fast low-power optical memory based on coupled micro-ring lasers. Nature, 2004, 432(7014): 206–209
CrossRef Pubmed Google scholar
[12]
Ding Y, Zhang X B, Zhang X L, Huang D. Proposal for loadable and erasable optical memory unit based on dual active microring optical integrators. Optics Communications, 2008, 281(21): 5315–5321
CrossRef Google scholar
[13]
Ding Y, Zhang X, Zhang X, Huang D. Active microring optical integrator associated with electroabsorption modulators for high speed low light power loadable and erasable optical memory unit. Optics Express, 2009, 17(15): 12835–12848
CrossRef Pubmed Google scholar
[14]
Ding Y, Pu M, Liu L, Xu J, Peucheret C, Zhang X, Huang D, Ou H. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure. Optics Express, 2011, 19(7): 6462–6470
CrossRef Pubmed Google scholar
[15]
Yariv A. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electronics Letters, 2000, 36(4): 321–322
CrossRef Google scholar
[16]
Amarnath K. Active microring and microdisk optical resonator on indium phosphide. Dissertation for the Doctoral degree. College Park: University of Maryland, 2006
[17]
Yu Y, Zhang X L, Huang D X, Li L J, Fu W. 20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals. IEEE Photonics Technology Letters, 2007, 19(14): 1027–1029
CrossRef Google scholar
[18]
Zhang Y, Xu E, Huang D, Zhang X. All-optical format conversion from RZ to NRZ utilizing microfiber resonator. IEEE Photonics Technology Letters, 2009, 21(17): 1202–1204
CrossRef Google scholar
[19]
Ding Y, Peucheret C, Pu M, Zsigri B, Seoane J, Liu L, Xu J, Ou H, Zhang X, Huang D. Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator. Optics Express, 2010, 18(20): 21121–21130
CrossRef Pubmed Google scholar
[20]
Xiong M, Ozolins O, Ding Y, Huang B, An Y, Ou H, Peucheret C, Zhang X. Simultaneous RZ-OOK to NRZ-OOK and RZ-DPSK to NRZ-DPSK format conversion in a silicon microring resonator. Optics Express, 2012, 20(25): 27263–27272
CrossRef Pubmed Google scholar
[21]
Hansen Mulvad H C, Oxenløwe L K, Galili M, Clausen A T, Grüner-Nielsen L, Jeppesen P. 1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing. Electronics Letters, 2009, 45(5): 280–281
CrossRef Google scholar
[22]
Hayee M I, Willner A E. NRZ versus RZ in 10–40-Gb/s dispersion-managed WDM transmission systems. IEEE Photonics Technology Letters, 1999, 11(8): 991–993
CrossRef Google scholar
[23]
Ding Y, Hu H, Galili M, Xu J, Liu L, Pu M, Mulvad H C H, Oxenløwe L K, Peucheret C, Jeppesen P, Zhang X, Huang D, Ou H. Generation of a 640 Gbit/s NRZ OTDM signal using a silicon microring resonator. Optics Express, 2011, 19(7): 6471–6477
CrossRef Pubmed Google scholar
[24]
Hansen Mulvad H C, Galili M, Oxenløwe L K, Hu H, Clausen A T, Jensen J B, Peucheret C, Jeppesen P. Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel. Optics Express, 2010, 18(2): 1438–1443
CrossRef Pubmed Google scholar
[25]
Gnauck A H, Winzer P J. Optical phase-shift-keyed transmission. Journal of Lightwave Technology, 2005, 23(1): 115–130
CrossRef Google scholar
[26]
Kaminow I P. Balanced optical discriminator. Applied Optics, 1964, 3(4): 507–510
CrossRef Google scholar
[27]
Zhang L, Yang J Y, Song M, Li Y, Zhang B, Beausoleil R G, Willner A E. Microring-based modulation and demodulation of DPSK signal. Optics Express, 2007, 15(18): 11564–11569
CrossRef Pubmed Google scholar
[28]
Xu L, Li C, Wong C, Tsang H K. Optical differential-phase shift- keying demodulation using a silicon microring resonator. IEEE Photonics Technology Letters, 2009, 21(5): 295–297
CrossRef Google scholar
[29]
Ding Y, Xu J, Peucheret C, Pu M, Liu L, Seoane J, Ou H, Zhang X, Huang D. Multi-channel 40 Gb/s NRZ-DPSK demodulation using a single silicon microring resonator. Journal of Lightwave Technology, 2011, 29(5): 677–684
CrossRef Google scholar
[30]
Matsui Y, Mahgerefteh D, Zheng X, Liao C, Fan Z F, McCallion K, Tayebati P. Chirp-managed directly modulated laser (CML). IEEE Photonics Technology Letters, 2006, 18(2): 385–387
CrossRef Google scholar
[31]
An Y, Lorences Riesgo A, Seoane J, Ding Y, Ou H, Peucheret C. Transmission property of directly modulated signals enhanced by a micro-ring resonator. In: Proceedings of OptoElectronics and Communications Conference, OECC’2012. Busan, Korea, 2012, paper 6F3–3
[32]
An Y, Müller M, Estaran J, Spiga S, Da Ros F, Peucheret C, Amann M C. Signal quality enhancement of directly-modulated VCSELs using a micro-ring resonator transfer function. In: Proceedings of OptoElectronics and Communications Conference/Photonics in Switching, OECC/PS’2013. Kyoto, Japan, 2013, paper ThK3–3
[33]
Yao J, Zeng F, Wang Q. Photonic generation of ultrawideband signals. Journal of Lightwave Technology, 2007, 25(11): 3219–3235
CrossRef Google scholar
[34]
Liu F, Wang T, Zhang Z, Qiu M, Su Y. On-chip photonic generation of ultrawideband monocycle pulses. Electronics Letters, 2009, 45(24): 1247–1249
CrossRef Google scholar
[35]
Ding Y, Huang B, Peucheret C, Xu J, Ou H, Zhang X, Huang D. Ultra-wide band signal generation using a coupling-tunable silicon microring resonator. Optics Express, 2014, 22(5): 6078–6085
CrossRef Pubmed Google scholar
[36]
Barwicz T, Watts M R, Popovic M, Rakich P T, Socci L, Kartner F X, Ippen E P, Smith H I. Polarization-transparent microphotonic devices in the strong confinement limit. Nature Photonics, 2007, 1(1): 57–60
CrossRef Google scholar
[37]
Ding Y, Liu L, Peucheret C, Xu J, Ou H, Yvind K, Zhang X, Huang D. Towards polarization diversity on the SOI platform with simple fabrication process. IEEE Photonics Technology Letters, 2011, 23(23): 1808–1810
CrossRef Google scholar
[38]
Liu L, Ding Y, Yvind K, Hvam J M. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits. Optics Express, 2011, 19(13): 12646–12651
CrossRef Pubmed Google scholar
[39]
Zhang J, Yu M, Lo G Q, Kwong D L. Silicon-waveguide-based mode evolution polarization rotator. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 53–60
CrossRef Google scholar
[40]
Ding Y, Liu L, Peucheret C, Ou H. Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler. Optics Express, 2012, 20(18): 20021–20027
CrossRef Pubmed Google scholar
[41]
Ding Y, Ou H, Peucheret C. Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process. Optics Letters, 2013, 38(8): 1227–1229
CrossRef Pubmed Google scholar
[42]
Ding Y, Huang B, Ou H, Da Ros F, Peucheret C. Polarization diversity DPSK demodulator on the silicon-on-insulator platform with simple fabrication. Optics Express, 2013, 21(6): 7828–7834
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(891 KB)

Accesses

Citations

Detail

Sections
Recommended

/