Behavioral methods for the functional assessment of hair cells in zebrafish

Qin Yang , Peng Sun , Shi Chen , Hongzhe Li , Fangyi Chen

Front. Med. ›› 2017, Vol. 11 ›› Issue (2) : 178 -190.

PDF (338KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (2) : 178 -190. DOI: 10.1007/s11684-017-0507-x
REVIEW
REVIEW

Behavioral methods for the functional assessment of hair cells in zebrafish

Author information +
History +
PDF (338KB)

Abstract

Zebrafish is an emerging animal model for studies on auditory system. This model presents high comparability with humans, good accessibility to the hearing organ, and high throughput capacity. To better utilize this animal model, methodologies need to be used to quantify the hearing function of the zebrafish. Zebrafish displays a series of innate and robust behavior related to its auditory function. Here, we reviewed the advantage of using zebrafish in auditory research and then introduced three behavioral tests, as follows: the startle response, the vestibular-ocular reflex, and rheotaxis. These tests are discussed in terms of their physiological characteristics, up-to-date technical development, and apparatus description. Test limitation and areas to improve are also introduced. Finally, we revealed the feasibility of these applications in zebrafish behavioral assessment and their potential in the high-throughput screening on hearing-related genes and drugs.

Keywords

zebrafish (Danio rerio) / behavior / auditory / startle response / vestibular-ocular reflex / rheotaxis

Cite this article

Download citation ▾
Qin Yang, Peng Sun, Shi Chen, Hongzhe Li, Fangyi Chen. Behavioral methods for the functional assessment of hair cells in zebrafish. Front. Med., 2017, 11(2): 178-190 DOI:10.1007/s11684-017-0507-x

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

A major factor that limits the use of zebrafish in auditory research is the deficiency in the methodology of assessing auditory function. The auditory function in mammalian vertebrates is typically measured by electrophysiological techniques, including auditory evoked potentials, microphonic potential, and patch clamp determination of cell membrane potential. These measurements are objective and precise but are difficult to conduct on zebrafish and its larva because of their miniature size. A popular method for assessing the hearing is the microscopic imaging to inspect neuromast hair cells, neuro-sensory cells that detect balance, vibration, and current flow.In vivo imaging is straightforward in zebrafish because of its easy accessibility to neuromasts that are found at stereotypic positions along their lateral line with hair cells aggregated into clumps. However, a functional assessment is still necessary because the imaging can not be repetitively applied on the same individual animal over a long period, and the morphological alternation is not necessarily parallel to the functional change. Visible changes in neuromast morphology indicate severe damage. However, these changes are insufficient to evaluate physiological changes that are induced by genetic modification or drug intervention. Fortunately, various behavioral methods were devised to meet this demand. For instance, three types of nervous reflexes, namely, acoustic startle response, vestibular-ocular reflex (VOR), and rheotaxis, are stable and reliable in evaluating the function of hair cells in zebrafish.

Why use the zebrafish in auditory studies?

High comparability with humans

Accessibility of hair cells

High-throughput capability

Approaches to assess auditory function

Electrophysiology

Electrophysiological techniques are typically used for auditory assessment. These techniques are fast and accurate in mammals but are complicated and produce unsteady results in zebrafish. These technologies include the auditory-evoked potential (AEP), microphonic potential, and cellular potential via patch clamp. Since these three technologies respectively record the response of the auditory neural center, sensory organs, and cells, the electrodes are accordingly located on the skin near the brain stem, inner ear/lateral line, and hair cell/ganglion cell []. These technologies are invasive and sophisticated to be applied on miniature zebrafish larvae, yet zebrafish develops hearing ability since 5-day post-fertilization (dpf). This factor is a major drawback because most auditory malformations occur in larvae and only a minority of abnormal larvae will survive to adults. On the contrary, the patch clamp approach measures only one cell at a time and thus only records a handful cells at different states of damage and regeneration. As a result, the patch clamp technique does not assess the entire hearing function. Additionally, electrophysiological data are not appropriate for longitudinal comparison. For instance, AEP data obtained from zebrafish showed conflicting relationship between hearing sensitivity and age/size of subjects []. This phenomenon occurs because of the Weberian ossicles connecting the inner ear to the swim bladder, which play a facilitative role in enhancing hearing sensitivity and extending the upper frequency limit []. Therefore, the inflatable degree of the swim bladder interferes with the electrophysiological results. Yin and Wang established a baseline of hearing sensitivity for zebrafish from 40 dpf to 20 months post-fertilization, revealing that the hearing threshold decreases during development and increases during aging []. This outcome is consistent with the morphological changes of auditory hair cells but not with preceding studies. In addition, no expansion of the hearing frequency was observed along with the development of the Weberian ossicles. This finding is unclear for explicit reasons, results in conflictive conclusions, and thus restricts the uses of AEP in zebrafish.

Hair cell imaging

Behavioral methods

Rheotaxis

Stable water flow with appropriate strength is needed to properly measure rheotaxis. Fishes swim freely in low-strength flow and are rushed away in high-strength flow. A stable laminar flow helps accurately quantify the strength of flow. However in early time, non-laminar flow was used in experimental settings. For instance, McNeilet al. [] generated a unidirectional vortex flow within a 50 ml beaker using a magnetic stirring apparatus. Four zebrafish larvae were transferred into the beaker and were allowed 2 min to acclimatize to the environment and flow before recording. In the small beaker, the strength of the curve flow varied in different depths and distances to the vortex center. To straighten the curved flow, Olszewskiet al. [] built a suction chamber for the rheotactic measurement (Fig. 2A). The suction chamber was a cylindrical tank that measures at 8.3 cm in diameter and 7.7 cm in height. The center of the bottom was connected to a suction pump and a fluid container through a tubule. Thus, an inward-radial flow was generated, and the strength of the flow was set to avoid inhaling the zebrafish into the tubule. The suction chamber was submerged in a larger container to supplement water and produce constant suction. This apparatus presented noticeable improvement compared with the McNeil model but still had several limitations. First, the flow was not exactly horizontal and sufficiently stable. Second, the strength of the flow varied at different positions. As a result, in the assay conducted by Olszewski [], instead of remaining in one position, the zebrafish typically closed up to the suction center in relatively slow velocity and then burst into swimming to avoid the suction center. In the assay, fish were placed in the water only 1.5 cm away from the suction center without allowance of acclimation, which increased inconsistency in the measurement. However, if the fish are placed in a farther position, then faster total flow and larger water containers are required to maintain the same flow strength that the fish experienced. To solve this particular issue, the apparatus was further improved by Oliveet al. [] who used a pump to recycle water, offering stable flow for a longer time. A horizontal board 4 mm below the water surface was used to replace the suction chamber and a horizontal suction pipe was placed behind the board to produce horizontal flow. However, the flow was turbulent; the small depth of water above the board aggravated the turbulent and was unfavorable for fish swimming. Eventually, a laminar flow that is a circulatory flow system was created by Suliet al. (Fig. 2B) []. A range of 20–30 zebrafish larvae were placed in a long pipe with metallic window screens on both front and rear sides of the fish. The window screens were treated as collimators and produced laminar flow, which was confirmed by the flow coloration. The water temperature was controlled at 26–28 °C, and the fish were allowed 3 min for acclimation. This apparatus can test only one strain of zebrafish or one experimental condition at a time.

Startle response

VOR

Several groups developed experimental setups to measure larval fish VOR with different methods in fixing and stimulating the fish larvae. Moormanet al. placed the zebrafish larva in a glass capillary tube to limit its body motion. The tube was tilted to trigger the gravity-induced VOR, which was recorded by an ophthalmic microscope and a digital video camera []. Easter and Nicola placed the fish on a horizontal platform and manually rotated the platform to evoke the VOR. The eye movement was recorded by a micro-amplifier video camera []. Recently, Beck et al. built a system with motorized platform and computerized eye movement analysis system (Fig. 5A) []. In this instrument, the fish was placed on a servo-drive platform where speed and position can be obtained in real-time. Temperature was strictly controlled to ensure the physiological activity of the fish. A CCD camera above the platform was aimed at the fish head and rotated along with the platform. Image processing software extracted the video information about the angle and velocity of the swing eyes. Furthermore, an additional module to measure the optokinetic reflex (OKR) was integrated into this instrument. OKR is another type of eye movement performed by the visual and oculomotor abilities and can be used to verify the motor function of the fish larva in the VOR study. OKR was performed prior to the VOR measurement. A drum with white and black stripes encircling the zebrafish was rotated to evoke eye motions following the stripes. If OKR was normal and VOR was missing, then, the defects were positioned at the vestibular sensor rather than at the later motor part of the VOR pathway.

Outlook for the behavioral methods of zebrafish

High-throughput screening

Gene screening

Pharmacological screening

Neural network

Conclusions

References

[1]

He YCai  CTang D Sun SLi  H. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts. Front Cell Neurosci 20148: 382

[2]

Shen XLiu  FWang Y Wang HMa  JXia W Zhang J Jiang N Sun SWang  XMa D . Down-regulation of msrb3 and destruction of normal auditory system development through hair cell apoptosis in zebrafish. Int J Dev Biol 201559(4-6): 195–203

[3]

Stawicki TMEsterberg  RHailey DW Raible DW Rubel EW . Using the zebrafish lateral line to uncover novel mechanisms of action and prevention in drug-induced hair cell death. Front Cell Neurosci 20159: 46

[4]

Steiner ABKim  TCabot V Hudspeth AJ . Dynamic gene expression by putative hair-cell progenitors during regeneration in the zebrafish lateral line. Proc Natl Acad Sci USA 2014111(14): E1393–E1401

[5]

Zamora LYLu  Z. Alcohol-induced morphological deficits in the development of octavolateral organs of the zebrafish (Danio rerio). Zebrafish 201310(1): 52–61

[6]

Duncan JSFritzsch  B. Evolution of sound and balance perception: innovations that aggregate single hair cells into the ear and transform a gravistatic sensor into the organ of corti. Anat Rec (Hoboken) 2012295(11): 1760–1774

[7]

Ou HCSantos  FRaible DW Simon JA Rubel EW . Drug screening for hearing loss: using the zebrafish lateral line to screen for drugs that prevent and cause hearing loss. Drug Discov Today 201015(7-8): 265–271

[8]

Howe KClark  MDTorroja CF Torrance J Berthelot C Muffato M Collins JE Humphray S McLaren K Matthews L McLaren S Sealy I Caccamo M Churcher C Scott C Barrett JC Koch RRauch  GJWhite S Chow WKilian  BQuintais LT Guerra-Assunção JA Zhou YGu  YYen J Vogel JH Eyre TRedmond  SBanerjee R Chi JFu  BLangley E Maguire SF Laird GK Lloyd D Kenyon E Donaldson S Sehra H Almeida-King J Loveland J Trevanion S Jones M Quail M Willey D Hunt ABurton  JSims S McLay K Plumb B Davis J Clee COliver  KClark R Riddle C Elliot D Threadgold G Harden G Ware DBegum  SMortimore B Kerry G Heath P Phillimore B Tracey A Corby N Dunn MJohnson  CWood J Clark S Pelan S Griffiths G Smith M Glithero R Howden P Barker N Lloyd C Stevens C Harley J Holt KPanagiotidis  GLovell J Beasley H Henderson C Gordon D Auger K Wright D Collins J Raisen C Dyer LLeung  KRobertson L Ambridge K Leongamornlert D McGuire S Gilderthorp R Griffiths C Manthravadi D Nichol S Barker G Whitehead S Kay MBrown  JMurnane C Gray EHumphries  MSycamore N Barker D Saunders D Wallis J Babbage A Hammond S Mashreghi-Mohammadi M Barr LMartin  SWray P Ellington A Matthews N Ellwood M Woodmansey R Clark G Cooper J Tromans A Grafham D Skuce C Pandian R Andrews R Harrison E Kimberley A Garnett J Fosker N Hall RGarner  PKelly D Bird CPalmer  SGehring I Berger A Dooley CM Ersan-Ürün Z Eser CGeiger  HGeisler M Karotki L Kirn AKonantz  JKonantz M Oberländer M Rudolph-Geiger S Teucke M Lanz CRaddatz  GOsoegawa K Zhu BRapp  AWidaa S Langford C Yang FSchuster  SCCarter NP Harrow J Ning ZHerrero  JSearle SM Enright A Geisler R Plasterk RH Lee CWesterfield  Mde Jong PJ Zon LIPostlethwait  JHNüsslein-Volhard CHubbard TJ Roest Crollius H Rogers J Stemple DL . The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013496(7446): 498–503

[9]

Nicolson T. The genetics of hearing and balance in zebrafish. Annu Rev Genet 200539(1): 9–22

[10]

Kanungo JCuevas  EAli SF Paule MG . Zebrafish model in drug safety assessment. Curr Pharm Des 201420(34): 5416–5429

[11]

Schibler AMalicki  J. A screen for genetic defects of the zebrafish ear. Mech Dev 2007124(7-8): 592–604

[12]

Whitfield TTRiley  BBChiang MY Phillips B . Development of the zebrafish inner ear. Dev Dyn 2002223(4): 427–458

[13]

Ton CParng  C. The use of zebrafish for assessing ototoxic and otoprotective agents. Hear Res 2005208(1-2): 79–88

[14]

Tanimoto MOta  YHorikawa K Oda Y. Auditory input to CNS is acquired coincidentally with development of inner ear after formation of functional afferent pathway in zebrafish. J Neurosci 200929(9): 2762–2767

[15]

Fritzsch BBeisel  KW. Evolution and development of the vertebrate ear. Brain Res Bull 200155(6): 711–721

[16]

Haden MEinarsson  RYazejian B . Patch clamp recordings of hair cells isolated from zebrafish auditory and vestibular end organs. Neuroscience 2013248: 79–87

[17]

Olt JJohnson  SLMarcotti W In vivo and in vitro biophysical properties of hair cells from the lateral line and inner ear of developing and adult zebrafish. J Physiol 2014592(10): 2041–2058

[18]

Trapani JGNicolson  T. Physiological recordings from zebrafish lateral-line hair cells and afferent neurons. Methods Cell Biol 2010100: 219–231

[19]

Trapani JGNicolson  T. Mechanism of spontaneous activity in afferent neurons of the zebrafish lateral-line organ. J Neurosci 201131(5): 1614–1623

[20]

Uribe PMSun  HWang K Asuncion JD Wang QChen  CWSteyger PS Smith ME Matsui JI . Aminoglycoside-induced hair cell death of inner ear organs causes functional deficits in adult zebrafish (Danio rerio). PLoS ONE 20138(3): e58755

[21]

Egner SAMann  DA. Auditory sensitivity of sergeant major damselfish Abudefduf saxatilis from post-settlement juvenile to adult. Mar Ecol Prog Ser 2005285: 213–222

[22]

Higgs DMRollo  AKSouza MJ Popper AN . Development of form and function in peripheral auditory structures of the zebrafish (Danio rerio). J Acoust Soc Am 2003113(2): 1145–1154

[23]

Lechner WHeiss  ESchwaha T Glösmann M Ladich F . Ontogenetic development of weberian ossicles and hearing abilities in the African bullhead catfish. PLoS ONE 20116(4): e18511

[24]

Lechner WWysocki  LELadich F . Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni. BMC Biol 20108(1): 10

[25]

Vasconcelos ROLadich  F. Development of vocalization, auditory sensitivity and acoustic communication in the Lusitanian toadfish Halobatrachus didactylus. J Exp Biol 2008211(Pt 4): 502–509

[26]

Bang PISewell  WFMalicki JJ . Morphology and cell type heterogeneities of the inner ear epithelia in adult and juvenile zebrafish (Danio rerio). J Comp Neurol 2001438(2): 173–190

[27]

Wang JSong  QYu D Yang GXia  LSu K Shi HWang  JYin S . Ontogenetic development of the auditory sensory organ in zebrafish (Danio rerio): changes in hearing sensitivity and related morphology. Sci Rep 20155: 15943

[28]

Browning LMHuang  TXu XH . Real-time in vivo imaging of size-dependent transport and toxicity of gold nanoparticles in zebrafish embryos using single nanoparticle plasmonic spectroscopy. Interface Focus 20133(3): 20120098

[29]

Pinto-Teixeira FMuzzopappa  MSwoger J Mineo A Sharpe J López-Schier H . Intravital imaging of hair-cell development and regeneration in the zebrafish. Front Neuroanat 20137: 33

[30]

Tanimoto MOta  YInoue M Oda Y. Origin of inner ear hair cells: morphological and functional differentiation from ciliary cells into hair cells in zebrafish inner ear. J Neurosci 201131(10): 3784–3794

[31]

Wolman MGranato  M. Behavioral genetics in larval zebrafish: learning from the young. Dev Neurobiol 201272(3): 366–372

[32]

Raible DWKruse  GJ. Organization of the lateral line system in embryonic zebrafish. J Comp Neurol 2000421(2): 189–198

[33]

Niihori MPlatto  TIgarashi S Hurbon A Dunn AM Tran PTran  HMudery JA Slepian MJ Jacob A . Zebrafish swimming behavior as a biomarker for ototoxicity-induced hair cell damage: a high-throughput drug development platform targeting hearing loss. Transl Res 2015166(5): 440–450

[34]

McNeil PLBoyle  DHenry TB Handy RD Sloman KA . Effects of metal nanoparticles on the lateral line system and behavior in early life stages of zebrafish (Danio rerio). Aquat Toxicol 2014152: 318–323

[35]

Olszewski JHaehnel  MTaguchi M Liao JC . Zebrafish larvae exhibit rheotaxis and can escape a continuous suction source using their lateral line. PLoS ONE 20127(5): e36661

[36]

Olive RWolf  SDubreuil A Bormuth V Debrégeas G Candelier R . Rheotaxis of larval zebrafish: behavioral study of a multi-sensory process. Front Syst Neurosci 201610: 14

[37]

Suli AWatson  GMRubel EW Raible DW . Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. PLoS ONE 20127(2): e29727

[38]

Kimmel CBPatterson  JKimmel RO . The development and behavioral characteristics of the startle response in the zebrafish. Dev Psychobiol 19747(1): 47–60

[39]

McElligott MBO’malley  DM. Prey tracking by larval zebrafish: axial kinematics and visual control. Brain Behav Evol 200566(3): 177–196

[40]

Burgess HAGranato  M. Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 2007210(14): 2526–2539

[41]

Zeddies DGFay  RR. Development of the acoustically evoked behavioral response in zebrafish to pure tones. J Exp Biol 2005208(7): 1363–1372

[42]

Nicolson TRüsch  AFriedrich RW Granato M Ruppersberg JP Nüsslein-Volhard C . Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants. Neuron 199820(2): 271–283

[43]

Chatterjee PPadmanarayana  MAbdullah N Holman CL LaDu JTanguay  RLJohnson CP . Otoferlin deficiency in zebrafish results in defects in balance and hearing: rescue of the balance and hearing phenotype with full-length and truncated forms of mouse otoferlin. Mol Cell Biol 201535(6): 1043–1054

[44]

Cervi ALPoling  KRHiggs DM . Behavioral measure of frequency detection and discrimination in the zebrafish, Danio rerio. Zebrafish 20129(1): 1–7

[45]

Liu FXia  WHu J Wang YYang  FSun S Zhang J Jiang N Wang HTian  WWang X Ma D. Solute carrier family 26 member a2 (slc26a2) regulates Otic development and hair cell survival in zebrafish. PLoS ONE 201510(9): e0136832

[46]

Higgs DMSouza  MJWilkins HR Presson JC Popper AN . Age- and size-related changes in the inner ear and hearing ability of the adult zebrafish (Danio rerio). J Assoc Res Otolaryngol 20023(2): 174–184

[47]

Bang PIYelick  PCMalicki JJ Sewell WF . High-throughput behavioral screening method for detecting auditory response defects in zebrafish. J Neurosci Methods 2002118(2): 177–187

[48]

Go WBessarab  DKorzh V . atp2b1a regulates Ca(2+) export during differentiation and regeneration of mechanosensory hair cells in zebrafish. Cell Calcium 201048(5): 302–313

[49]

Burgess HAGranato  M. Sensorimotor gating in larval zebrafish. J Neurosci 200727(18): 4984–4994

[50]

Bhandiwad AAZeddies  DGRaible DW Rubel EW Sisneros JA . Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay. J Exp Biol 2013216(18): 3504–3513

[51]

Hedrick TL. Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir Biomim 20083(3): 034001

[52]

Neumeister HSzabo  TMPreuss T . Behavioral and physiological characterization of sensorimotor gating in the goldfish startle response. J Neurophysiol 200899(3): 1493–1502

[53]

Curtin PCPreuss  T. Glycine and GABAA receptors mediate tonic and phasic inhibitory processes that contribute to prepulse inhibition in the goldfish startle network. Front Neural Circuits 20159: 12

[54]

Ku YAhn  JWKwon C Suh MWLee  JHOh SH Kim HC. Gap prepulse inhibition of the auditory late response in healthy subjects. Psychophysiology 201552(11): 1511–1519

[55]

Maple AMSmith  KJPerna MK Brown RW . Neonatal quinpirole treatment produces prepulse inhibition deficits in adult male and female rats. Pharmacol Biochem Behav 2015137: 93–100

[56]

Moyer CEErickson  SLFish KN Thiels E Penzes P Sweet RA . Developmental trajectories of auditory cortex synaptic structures and gap-prepulse inhibition of acoustic startle between early adolescence and young adulthood in mice. Cereb Cortex 2016; 26(5): 2115–2126

[57]

Saletti PGMaior  RSHori E Almeida RM Nishijo H Tomaz C . Whole-body prepulse inhibition protocol to test sensorymotor gating mechanisms in monkeys. PLoS ONE 20149(8): e105551

[58]

Dehmel SEisinger  DShore SE . Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs. Front Syst Neurosci 20126: 42

[59]

Walter MTziridis  KAhlf S Schulze H . Context dependent auditory thresholds determined by brainstem audiometry and prepulse inhibition in Mongolian gerbils. Open Journal of Acoustics 20122(01): 34–49

[60]

Ernest SRosa  FM. A genomic region encompassing a newly identified exon provides enhancing activity sufficient for normal myo7aa expression in zebrafish sensory hair cells. Dev Neurobiol 201575(9): 961–983

[61]

Lappe-Osthege MTalamo  SHelmchen C Sprenger A . Overestimation of saccadic peak velocity recorded by electro-oculography compared to video-oculography and scleral search coil. Clin Neurophysiol 2010121(10): 1786–1787

[62]

Kimmel DLMammo  DNewsome WT . Tracking the eye non-invasively: simultaneous comparison of the scleral search coil and optical tracking techniques in the macaque monkey. Front Behav Neurosci 20126: 49

[63]

Moorman SJBurress  CCordova R Slater J . Stimulus dependence of the development of the zebrafish (Danio rerio) vestibular system. J Neurobiol 199938(2): 247–258

[64]

Easter SS JrNicola  GN. The development of eye movements in the zebrafish (Danio rerio). Dev Psychobiol 199731(4): 267–276

[65]

Beck JCGilland  ETank DW Baker R . Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish. J Neurophysiol 200492(6): 3546–3561

[66]

Mo WChen  FNechiporuk A Nicolson T . Quantification of vestibular-induced eye movements in zebrafish larvae. BMC Neurosci 201011(1): 110

[67]

Clemens Grisham R Kindt K Finger-Baier K Schmid B Nicolson T . Mutations in ap1b1 cause mistargeting of the Na(+)/K(+)-ATPase pump in sensory hair cells. PLoS ONE 20138(4): e60866

[68]

Lambert FMBeck  JCBaker R Straka H . Semicircular canal size determines the developmental onset of angular vestibuloocular reflexes in larval Xenopus. J Neurosci 200828(32): 8086–8095

[69]

Sheets LTrapani  JGMo W Obholzer N Nicolson T . Ribeye is required for presynaptic Ca(V)1.3a channel localization and afferent innervation of sensory hair cells. Development 2011138(7): 1309–1319

[70]

Bianco IHMa  LHSchoppik D Robson DN Orger MB Beck JC Li JMSchier  AFEngert F Baker R . The tangential nucleus controls a gravito-inertial vestibulo-ocular reflex. Curr Biol 201222(14): 1285–1295

[71]

Migliaccio AASchubert  MCJiradejvong P Lasker DM Clendaniel RA Minor LB . The three-dimensional vestibulo-ocular reflex evoked by high-acceleration rotations in the squirrel monkey. Exp Brain Res 2004159(4): 433–446

[72]

Moorman SJCordova  RDavies SA . A critical period for functional vestibular development in zebrafish. Dev Dyn 2002223(2): 285–291

[73]

Delcourt JBecco  CVandewalle N Poncin P . A video multitracking system for quantification of individual behavior in a large fish shoal: advantages and limits. Behav Res Methods 200941(1): 228–235

[74]

Fontaine ELentink  DKranenbarg S Müller UK van Leeuwen JL Barr AH Burdick JW . Automated visual tracking for studying the ontogeny of zebrafish swimming. J Exp Biol 2008211(8): 1305–1316

[75]

Pardo-Martin CChang  TYKoo BK Gilleland CL Wasserman SC Yanik MF . High-throughput in vivo vertebrate screening. Nat Methods 20107(8): 634–636

[76]

Pulak R. Tools for automating the imaging of zebrafish larvae. Methods 201696: 118–126

[77]

Liu FYang  FWen D Xia WHao  LHu J Zong JShen  XMa J Jiang N Sun SZhang  JWang H Wang XMa  ZMa D . Grhl1 deficiency affects inner ear development in zebrafish. Int J Dev Biol 201559(10-12): 417–423

[78]

Goldfarb AAvraham  KB. Genetics of deafness: recent advances and clinical implications. J Basic Clin Physiol Pharmacol 200213(2): 75–88

[79]

Sang QZhang  JFeng R Wang XLi  QZhao X Xing QChen  WDu J Sun SChai  RLiu D Jin LHe  LLi H Wang L. Ildr1b is essential for semicircular canal development, migration of the posterior lateral line primordium and hearing ability in zebrafish: implications for a role in the recessive hearing impairment DFNB42. Hum Mol Genet 201423(23): 6201–6211

[80]

Harris JACheng  AGCunningham LL MacDonald G Raible DW Rubel EW . Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). J Assoc Res Otolaryngol 20034(2): 219–234

[81]

Akagi JKhoshmanesh  KEvans B Hall CJ Crosier KE Cooper JM Crosier PS Wlodkowic D . Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos. PLoS ONE 20127(5): e36630

[82]

Lammer EKamp  HGHisgen V Koch MReinhard  DSalinas ER Wendler K Zok SBraunbeck  T. Development of a flow-through system for the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). Toxicol In Vitro 200923(7): 1436–1442

[83]

Ou HSimon  JARubel EW Raible DW . Screening for chemicals that affect hair cell death and survival in the zebrafish lateral line. Hear Res 2012288(1-2): 58–66

[84]

Owens KNSantos  FRoberts B Linbo T Coffin AB Knisely AJ Simon JA Rubel EW Raible DW . Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genet 20084(2): e1000020

[85]

Li PWhite  RMZon LI . Transplantation in zebrafish. Methods Cell Biol 2011105: 403–417

[86]

Brandt T. Modeling brain function: the vestibulo-ocular reflex. Curr Opin Neurol 200114(1): 1–4

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (338KB)

3464

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/