Developing a polygenic risk score for pelvic organ prolapse: a combined risk assessment approach in Chinese women

Xi Cheng , Lei Li , Xijuan Lin , Na Chen , Xudong Liu , Yaqian Li , Zhaoai Li , Jian Gong , Qing Liu , Yuling Wang , Juntao Wang , Zhijun Xia , Yongxian Lu , Hangmei Jin , Xiaowei Zhang , Luwen Wang , Juan Chen , Guorong Fan , Shan Deng , Sen Zhao , Lan Zhu

Front. Med. ›› 2025, Vol. 19 ›› Issue (4) : 665 -674.

PDF (1688KB)
Front. Med. ›› 2025, Vol. 19 ›› Issue (4) : 665 -674. DOI: 10.1007/s11684-024-1114-2
RESEARCH ARTICLE

Developing a polygenic risk score for pelvic organ prolapse: a combined risk assessment approach in Chinese women

Author information +
History +
PDF (1688KB)

Abstract

Pelvic organ prolapse (POP), whose etiology is influenced by genetic and clinical risk factors, considerably impacts women’s quality of life. However, the genetic underpinnings in non-European populations and comprehensive risk models integrating genetic and clinical factors remain underexplored. This study constructed the first polygenic risk score (PRS) for POP in the Chinese population by utilizing 20 disease-associated variants from the largest existing genome-wide association study. We analyzed a discovery cohort of 576 cases and 623 controls and a validation cohort of 264 cases and 200 controls. Results showed that the case group exhibited a significantly higher PRS than the control group. Moreover, the odds ratio of the top 10% risk group was 2.6 times higher than that of the bottom 10%. A high PRS was significantly correlated with POP occurrence in women older than 50 years old and in those with one or no childbirths. As far as we know, the integrated prediction model, which combined PRS and clinical risk factors, demonstrated better predictive accuracy than other existing PRS models. This combined risk assessment model serves as a robust tool for POP risk prediction and stratification, thereby offering insights into individualized preventive measures and treatment strategies in future clinical practice.

Keywords

pelvic organ prolapse / genetic risk score / risk assessment

Cite this article

Download citation ▾
Xi Cheng, Lei Li, Xijuan Lin, Na Chen, Xudong Liu, Yaqian Li, Zhaoai Li, Jian Gong, Qing Liu, Yuling Wang, Juntao Wang, Zhijun Xia, Yongxian Lu, Hangmei Jin, Xiaowei Zhang, Luwen Wang, Juan Chen, Guorong Fan, Shan Deng, Sen Zhao, Lan Zhu. Developing a polygenic risk score for pelvic organ prolapse: a combined risk assessment approach in Chinese women. Front. Med., 2025, 19(4): 665-674 DOI:10.1007/s11684-024-1114-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jelovsek JE, Maher C, Barber MD. Pelvic organ prolapse. Lancet 2007; 369(9566): 1027–1038

[2]

Pujol-Gualdo N, Läll K, Lepamets M, Metspalu A, Nelis M, Milani L, Esko T, Hudjashov G, Rossi HR, Arffman RK, Piltonen TT, Mägi R, Laisk T. . Advancing our understanding of genetic risk factors and potential personalized strategies for pelvic organ prolapse. Nat Commun 2022; 13(1): 3584

[3]

Keshavarz H, Hillis SD, Kieke BA, Marchbanks PA. Hysterectomy surveillance—United States, 1994–1999. MMWr CDC Surveill Summ. 2002; 51(SS-5): 1–8

[4]

Smith FJ, Holman CAJ, Moorin RE, Tsokos N. Lifetime risk of undergoing surgery for pelvic organ prolapse. Obstet Gynecol 2010; 116(5): 1096–1100

[5]

Barber MD. Pelvic organ prolapse. BMJ 2016; 354: i3853

[6]

. 2015; 518(7538): 197–206

[7]

Altman D, Forsman M, Falconer C, Lichtenstein P. Genetic influence on stress urinary incontinence and pelvic organ prolapse. Eur Urol 2008; 54(4): 918–922

[8]

Allen-Brady K, Cannon-Albright L, Farnham JM, Teerlink C, Vierhout ME, van Kempen LC, Kluivers KB, Norton PA. Identification of six loci associated with pelvic organ prolapse using genome-wide association analysis. Obstet Gynecol 2011; 118(6): 1345–1353

[9]

Giri A, Wu JM, Ward RM, Hartmann KE, Park AJ, North KE, Graff M, Wallace RB, Bareh G, Qi L, O’Sullivan MJ, Reiner AP, Edwards TL, Velez Edwards DR. Genetic determinants of pelvic organ prolapse among African American and Hispanic women in the Women’s Health Initiative. PLoS One 2015; 10(11): e0141647

[10]

Olafsdottir T, Thorleifsson G, Sulem P, Stefansson OA, Medek H, Olafsson K, Ingthorsson O, Gudmundsson V, Jonsdottir I, Halldorsson GH, Kristjansson RP, Frigge ML, Stefansdottir L, Sigurdsson JK, Oddsson A, Sigurdsson A, Eggertsson HP, Melsted P, Halldorsson BV, Lund SH, Styrkarsdottir U, Steinthorsdottir V, Gudmundsson J, Holm H, Tragante V, Asselbergs FW, Thorsteinsdottir U, Gudbjartsson DF, Jonsdottir K, Rafnar T, Stefansson K. Genome-wide association identifies seven loci for pelvic organ prolapse in Iceland and the UK Biobank. Commun Biol 2020; 3(1): 129

[11]

Cox CK, Pandit A, Zawistowski M, Dutta D, Narla G, Swenson CW. Genome-wide association study of pelvic organ prolapse using the Michigan Genomics Initiative. Female Pelvic Med Reconstr Surg 2021; 27(8): 502–506

[12]

Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med 2020; 12(1): 44

[13]

Pang H, Zhang L, Han S, Li Z, Gong J, Liu Q, Liu X, Wang J, Xia Z, Lang J, Xu T, Zhu L. A nationwide population-based survey on the prevalence and risk factors of symptomatic pelvic organ prolapse in adult women in China—a pelvic organ prolapse quantification system-based study. BJOG 2021; 128(8): 1313–1323

[14]

Choi SW, O’Reilly PF. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 2019; 8(7): giz082

[15]

Allen-Brady K, Chua JWF, Cuffolo R, Koch M, Sorrentino F, Cartwright R. Systematic review and meta-analysis of genetic association studies of pelvic organ prolapse. Int Urogynecol J Pelvic Floor Dysfunct 2021; 33(1): 67–82

[16]

Kluivers KB, Lince SL, Ruiz-Zapata AM, Post WM, Cartwright R, Kerkhof MH, Widomska J, De Witte W, Pecanka J, Kiemeney LA, Vermeulen SH, Goeman JJ, Allen-Brady K, Oosterwijk E, Poelmans G. Molecular landscape of pelvic organ prolapse provides insights into disease etiology. Int J Mol Sci 2023; 24(7): 6087

[17]

Ding Y, Hou K, Xu Z, Pimplaskar A, Petter E, Boulier K, Privé F, Vilhjálmsson BJ, Olde Loohuis LM, Pasaniuc B. Polygenic scoring accuracy varies across the genetic ancestry continuum. Nature 2023; 618(7966): 774–781

[18]

Jung SH, Kim HR, Chun MY, Jang H, Cho M, Kim B, Kim S, Jeong JH, Yoon SJ, Park KW, Kim EJ, Yoon B, Jang JW, Kim Y, Hong JY, Choi SH, Noh Y, Kim KW, Kim SE, Lee JS, Jung NY, Lee J, Lee AY, Kim BC, Cho SH, Cho H, Kim JH, Jung YH, Lee DY, Lee JH, Lee ES, Kim SJ, Moon SY, Son SJ, Hong CH, Bae JS, Lee S, Na DL, Seo SW, Cruchaga C, Kim HJ, Won HH. Transferability of Alzheimer disease polygenic risk score across populations and its association with Alzheimer disease-related phenotypes. JAMA Netw Open 2022; 5(12): e2247162

[19]

Li L, Zhao G, Wu J, Pang H, Zhang T, Chen J, Zhang K, Zhu L. Interactions between genetic variants and environmental risk factors are associated with the severity of pelvic organ prolapse. Menopause 2023; 30(6): 621–628

[20]

Wang M, Kartsonaki C, Guo Y, Lv J, Gan W, Chen ZM, Li LM, Hu CG, Yang L, Yu M. Factors related to age at natural menopause in China: results from the China Kadoorie Biobank. Menopause 2021; 28(10): 1130–1142

[21]

Yang D, Haines C, Pan P, Zhang Q, Sun Y, Hong S, Tian F, Bai B, Peng X, Chen W, Yang X, Chen Y, Feng H, Zhao S, Lei H, Jiang Z, Ma X, Liao W. Menopausal symptoms in mid-life women in southern China. Climacteric 2008; 11(4): 329–336

[22]

Santoro N, Roeca C, Peters BA, Neal-Perry G. The menopause transition: signs, symptoms, and management options. J Clin Endocrinol Metab 2021; 106(1): 1–15

[23]

Schneider DL, Barrett-Connor EL, Morton DJ. Timing of postmenopausal estrogen for optimal bone mineral density. The Rancho Bernardo Study. JAMA 1997; 277(7): 543–547

[24]

Knowlton AA, Lee AR. Estrogen and the cardiovascular system. Pharmacol Ther 2012; 135(1): 54–70

[25]

Davis SR, Lambrinoudaki I, Lumsden M, Mishra GD, Pal L, Rees M, Santoro N, Simoncini T. Menopause. Nat Rev Dis Primers 2015; 1(1): 15004

[26]

Bromberger JT, Epperson CN. Depression during and after the perimenopause: impact of hormones, genetics, and environmental determinants of disease. Obstet Gynecol Clin North Am 2018; 45(4): 663–678

[27]

Mant J, Painter R, Vessey M. Epidemiology of genital prolapse: observations from the Oxford Family Planning Association Study. BJOG 1997; 104(5): 579–585

[28]

Hendrix SL, Clark A, Nygaard I, Aragaki A, Barnabei V, McTiernan A. Pelvic organ prolapse in the Women’s Health Initiative: gravity and gravidity. Am J Obstet Gynecol 2002; 186(6): 1160–1166

[29]

Callewaert G, Da Cunha M, Sindhwani N, Sampaolesi M, Albersen M, Deprest J. Cell-based secondary prevention of childbirth-induced pelvic floor trauma. Nat Rev Urol 2017; 14(6): 373–385

[30]

Bortolini MA, Drutz HP, Lovatsis D, Alarab M. Vaginal delivery and pelvic floor dysfunction: current evidence and implications for future research. Int Urogynecol J Pelvic Floor Dysfunct 2010; 21(8): 1025–1030

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1688KB)

Supplementary files

FMD-24056-OF-ZL_suppl_1

340

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/