Burning lactic acid: a road to revitalizing antitumor immunity

Jingwei Ma , Liang Tang , Jingxuan Xiao , Ke Tang , Huafeng Zhang , Bo Huang

Front. Med. ›› 2025, Vol. 19 ›› Issue (3) : 456 -473.

PDF (3356KB)
Front. Med. ›› 2025, Vol. 19 ›› Issue (3) : 456 -473. DOI: 10.1007/s11684-025-1126-6
REVIEW

Burning lactic acid: a road to revitalizing antitumor immunity

Author information +
History +
PDF (3356KB)

Abstract

Lactic acid (LA) accumulation in tumor microenvironments (TME) has been implicated in immune suppression and tumor progress. Diverse roles of LA have been elucidated, including microenvironmental pH regulation, signal transduction, post-translational modification, and metabolic remodeling. This review summarizes LA functions within TME, focusing on the effects on tumor cells, immune cells, and stromal cells. Reducing LA levels is a potential strategy to attack cancer, which inevitably affects the physiological functions of normal tissues. Alternatively, transporting LA into the mitochondria as an energy source for immune cells is intriguing. We underscore the significance of LA in both tumor biology and immunology, proposing the burning of LA as a potential therapeutic approach to enhance antitumor immune responses.

Keywords

lactic acid / metabolism / tumor immunotherapy

Cite this article

Download citation ▾
Jingwei Ma, Liang Tang, Jingxuan Xiao, Ke Tang, Huafeng Zhang, Bo Huang. Burning lactic acid: a road to revitalizing antitumor immunity. Front. Med., 2025, 19(3): 456-473 DOI:10.1007/s11684-025-1126-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ScheeleCW. Opuscula chemica et physica. Officina Mülleriana, 1789

[2]

BerzeliusJJ. Föreläsningar i djurkemien. Delen, 1808

[3]

Von Liebig J. Recherches de chimie animale. C R Hebd Seances Acad Sci 1847; 24: 69–73

[4]

Faude O, Kindermann W, Meyer T. Lactate threshold concepts: how valid are they. Sports Med 2009; 39(6): 469–490

[5]

Wasserman K. The anaerobic threshold measurement to evaluate exercise performance. Am Rev Respir Dis 1984; 129(2P2): S35–S40

[6]

Harmer AR, Chisholm DJ, McKenna MJ, Hunter SK, Ruell PA, Naylor JM, Maxwell LJ, Flack JR. Sprint training increases muscle oxidative metabolism during high-intensity exercise in patients with type 1 diabetes. Diabetes Care 2008; 31(11): 2097–2102

[7]

SchererJJ. Chemische und mikroskopische Untersuchungen zur Pathologie: angestellt an den Kliniken des Julius-Hospitales zu Würzburg. Winter, 1843

[8]

Scherer J.. Eine Untersuchung des Blutes bei Leukämie. Verhandlungen der Physikalisch-Medicinischen Gesellschaft im Würzburg 1851; 2: 321–325

[9]

Kompanje EJO, Jansen T, van der Hoven B, Bakker J. The first demonstration of lactic acid in human blood in shock by Johann Joseph Scherer (1814–1869) in January 1843. Intensive Care Med 2007; 33(11): 1967–1971

[10]

Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB. Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol 2018; 118(4): 691–728

[11]

Hasegawa H, Fukushima T, Lee JA, Tsukamoto K, Moriya K, Ono Y, Imai K. Determination of serum D-lactic and L-lactic acids in normal subjects and diabetic patients by column-switching HPLC with pre-column fluorescence derivatization. Anal Bioanal Chem 2003; 377(5): 886–891

[12]

ConnorHHWoods. Quantitative aspects of L+-lactate metabolism in human beings. Ciba Found Symp 1982; 214–234

[13]

Gladden L. Lactate metabolism: a new paradigm for the third millennium. J Physiol 2004; 558(1): 5–30

[14]

Du Bois-Reymond E. Sur la prétendue réaction acide des muscles. Ann Chim Phys 1859; 57: 353–356

[15]

Du Bois-ReymondE. De Fibrae muscularis Reactione ut Chemicis visa est acida. G. Reimer, 1859

[16]

Du Raymond B.. Sulla reazione acida dei muscoli. Il Nuovo Cimento (1855–1868) 1860; 11: 149–162

[17]

ArakiT. Ueber die Bildung von Milchsäure und Glycose im Organismus bei Sauerstoffmangel. Zweite Mittheilung. Ueber die Wirkung von Morphium, Amylnitrit, Cocaïn. 1891

[18]

ArakiT. Ueber die Bildung von Milchsäure und Glycose im Organismus bei Sauerstoffmangel. Dritte Mittheilung. 1892

[19]

ZillessenH.. Ueber die Bildung von Milchsäure und Glykose in den Organen bei gestörter Circulation und bei der Blausäurevergiftung. 1891

[20]

Fletcher WM, Hopkins FG. Lactic acid in amphibian muscle. J Physiol 1907; 35(4): 247–309

[21]

Kamminga H, Weatherall MW. The making of a biochemist. I: Frederick Gowland Hopkins’ construction of dynamic biochemistry. Med Hist 1996; 40(3): 269–292

[22]

Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE. Relation between muscle Na+ K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 2005; 365(9462): 871–875

[23]

DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 2007; 104(49): 19345–19350

[24]

Warburg O, Minami S. Versuche an überlebendem carcinom-gewebe. Klin Wochenschr 1923; 2(17): 776–777

[25]

Warburg O. On the origin of cancer cells. Science 1956; 123(3191): 309–314

[26]

Brooks GA. The science and translation of lactate shuttle theory. Cell Metab 2018; 27(4): 757–785

[27]

Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Zhan L, Guo J. Glucose feeds the TCA cycle via circulating lactate. Nature 2017; 551(7678): 115–118

[28]

Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, Ding J, Czyz D, Hu R, Ye Z, He M, Zheng YG, Shuman HA, Dai L, Ren B, Roeder RG, Becker L, Zhao Y. Metabolic regulation of gene expression by histone lactylation. Nature 2019; 574(7779): 575–580

[29]

Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X, Jia R. Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma. Genome Biol 2021; 22(1): 85

[30]

Hagihara H, Shoji H, Otabi H, Toyoda A, Katoh K, Namihira M, Miyakawa T. Protein lactylation induced by neural excitation. Cell Rep 2021; 37(2): 109820

[31]

Pan RY, He L, Zhang J, Liu X, Liao Y, Gao J, Liao Y, Yan Y, Li Q, Zhou X, Cheng J, Xing Q, Guan F, Zhang J, Sun L, Yuan Z. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab 2022; 34(4): 634–648.e636

[32]

Sun S, Xu X, Liang L, Wang X, Bai X, Zhu L, He Q, Liang H, Xin X, Wang L, Lou C, Cao X, Chen X, Li B, Wang B, Zhao J. Lactic acid-producing probiotic Saccharomyces cerevisiae attenuates ulcerative colitis via suppressing macrophage pyroptosis and modulating gut microbiota. Front Immunol 2021; 12: 777665

[33]

Irizarry-Caro RA, McDaniel MM, Overcast GR, Jain VG, Troutman TD, Pasare C. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc Natl Acad Sci USA 2020; 117(48): 30628–30638

[34]

Yang W, Wang P, Cao P, Wang S, Yang Y, Su H, Nashun B. Hypoxic in vitro culture reduces histone lactylation and impairs pre-implantation embryonic development in mice. Epigenetics Chromatin 2021; 14(1): 57

[35]

Cui H, Xie N, Banerjee S, Ge J, Jiang D, Dey T, Matthews QL, Liu RM, Liu G. Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation. Am J Respir Cell Mol Biol 2021; 64(1): 115–125

[36]

Certo M, Tsai CH, Pucino V, Ho PC, Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol 2021; 21(3): 151–161

[37]

Sun S, Li H, Chen J, Qian Q. Lactic acid: no longer an inert and end-product of glycolysis. Physiology (Bethesda) 2017; 32(6): 453–463

[38]

Brooks GA. Lactate as a fulcrum of metabolism. Redox Biol 2020; 35: 101454

[39]

Manosalva C, Quiroga J, Hidalgo AI, Alarcón P, Anseoleaga N, Hidalgo MA, Burgos RA. Role of lactate in inflammatory processes: friend or foe. Front Immunol 2022; 12: 808799

[40]

Li Z, Wang Q, Huang X, Yang M, Zhou S, Li Z, Fang Z, Tang Y, Chen Q, Hou H, Li L, Fei F, Wang Q, Wu Y, Gong A. Lactate in the tumor microenvironment: a rising star for targeted tumor therapy. Front Nutr 2023; 10: 1113739

[41]

Certo M, Tsai CH, Pucino V, Ho PC, Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol 2021; 21(3): 151–161

[42]

Nareika A, He L, Game BA, Slate EH, Sanders JJ, London SD, Lopes-Virella MF, Huang Y. Sodium lactate increases LPS-stimulated MMP and cytokine expression in U937 histiocytes by enhancing AP-1 and NF-κB transcriptional activities. Am J Physiol Endocrinol Metab 2005; 289(4): E534–E542

[43]

Wang Y, de Vallière C, Imenez Silva PH, Leonardi I, Gruber S, Gerstgrasser A, Melhem H, Weber A, Leucht K, Wolfram L, Hausmann M, Krieg C, Thomasson K, Boyman O, Frey-Wagner I, Rogler G, Wagner CA. The proton-activated receptor GPR4 modulates intestinal inflammation. J Crohn’s Colitis 2018; 12(3): 355–368

[44]

Apostolova P, Pearce EL. Lactic acid and lactate: revisiting the physiological roles in the tumor microenvironment. Trends Immunol 2022; 43(12): 969–977

[45]

Colucci ACM, Tassinari ID, Loss EDS, de Fraga LS. History and function of the lactate receptor GPR81/HCAR1 in the brain: a putative therapeutic target for the treatment of cerebral ischemia. Neuroscience 2023; 526: 144–163

[46]

Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther 2020; 206: 107451

[47]

Liu C, Kuei C, Zhu J, Yu J, Zhang L, Shih A, Mirzadegan T, Shelton J, Sutton S, Connelly MA, Lee G, Carruthers N, Wu J, Lovenberg TW. 3, 5-dihydroxybenzoic acid, a specific agonist for hydroxycarboxylic acid 1, inhibits lipolysis in adipocytes. J Pharmacol Exp Ther 2012; 341(3): 794–801

[48]

Wu G, Dai Y, Yan Y, Zheng X, Zhang H, Li H, Chen W. The lactate receptor GPR81 mediates hepatic lipid metabolism and the therapeutic effect of metformin on experimental NAFLDs. Eur J Pharmacol 2022; 924: 174959

[49]

de Castro Abrantes H, Briquet M, Schmuziger C, Restivo L, Puyal J, Rosenberg N, Rocher AB, Offermanns S, Chatton JY. The lactate receptor HCAR1 modulates neuronal network activity through the activation of Gα and Gβγ subunits. J Neurosci 2019; 39(23): 4422–4433

[50]

Hoque R, Farooq A, Ghani A, Gorelick F, Mehal WZ. Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology 2014; 146(7): 1763–1774

[51]

Harun-Or-Rashid M, Inman DM. Reduced AMPK activation and increased HCAR activation drive anti-inflammatory response and neuroprotection in glaucoma. J Neuroinflammation 2018; 15(1): 313

[52]

Feng J, Yang H, Zhang Y, Wei H, Zhu Z, Zhu B, Yang M, Cao W, Wang L, Wu Z. Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene 2017; 36(42): 5829–5839

[53]

Khatib-Massalha E, Bhattacharya S, Massalha H, Biram A, Golan K, Kollet O, Kumari A, Avemaria F, Petrovich-Kopitman E, Gur-Cohen S, Itkin T, Brandenburger I, Spiegel A, Shulman Z, Gerhart-Hines Z, Itzkovitz S, Gunzer M, Offermanns S, Alon R, Ariel A, Lapidot T. Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling. Nat Commun 2020; 11(1): 3547

[54]

Ohno Y, Oyama A, Kaneko H, Egawa T, Yokoyama S, Sugiura T, Ohira Y, Yoshioka T, Goto K. Lactate increases myotube diameter via activation of MEK/ERK pathway in C2C12 cells. Acta Physiol (Oxf) 2018; 223(2): e13042

[55]

Chen P, Zuo H, Xiong H, Kolar MJ, Chu Q, Saghatelian A, Siegwart DJ, Wan Y. Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis. Proc Natl Acad Sci USA 2017; 114(3): 580–585

[56]

Ji F, Zhou M, Zhu H, Jiang Z, Li Q, Ouyang X, Lv Y, Zhang S, Wu T, Li L. Integrative proteomic analysis of multiple posttranslational modifications in inflammatory response. Genom Proteom Bioinform 2022; 20(1): 163–176

[57]

Seo J, Lee KJ. Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J Biochem Mol Biol 2004; 37: 35–44

[58]

Karve TM, Cheema AK. Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J Amino Acids 2011; 2011: 207691

[59]

Shi W, Cassmann TJ, Bhagwate AV, Hitosugi T, Ip WKE. Lactic acid induces transcriptional repression of macrophage inflammatory response via histone acetylation. Cell Rep 2024; 43(2): 113746

[60]

Noe JT, Rendon BE, Geller AE, Conroy LR, Morrissey SM, Young LEA, Bruntz RC, Kim EJ, Wise-Mitchell A, Barbosa de Souza Rizzo M, Relich ER, Baby BV, Johnson LA, Affronti HC, McMasters KM, Clem BF, Gentry MS, Yan J, Wellen KE, Sun RC, Mitchell RA. Lactate supports a metabolic-epigenetic link in macrophage polarization. Sci Adv 2021; 7(46): eabi8602

[61]

Feng Q, Liu Z, Yu X, Huang T, Chen J, Wang J, Wilhelm J, Li S, Song J, Li W, Sun Z, Sumer BD, Li B, Fu YX, Gao J. Lactate increases stemness of CD8+ T cells to augment anti-tumor immunity. Nat Commun 2022; 13(1): 4981

[62]

Chen L, Huang L, Gu Y, Cang W, Sun P, Xiang Y. Lactate-lactylation hands between metabolic reprogramming and immunosuppression. Int J Mol Sci 2022; 23(19): 23

[63]

Dai X, Lv X, Thompson EW, Ostrikov KK. Histone lactylation: epigenetic mark of glycolytic switch. Trends Genet 2022; 38(2): 124–127

[64]

Goodwin ML, Harris JE, Hernández A, Gladden LB. Blood lactate measurements and analysis during exercise: a guide for clinicians. J Diabetes Sci Technol 2007; 1(4): 558–569

[65]

Bergman BC, Wolfel EE, Butterfield GE, Lopaschuk GD, Casazza GA, Horning MA, Brooks GA. Active muscle and whole body lactate kinetics after endurance training in men. J Appl Physiol 1999; 87(5): 1684–1696

[66]

Stanley W, Gertz EW, Wisneski J, Neese R, Morris D, Brooks G. Lactate extraction during net lactate release in legs of humans during exercise. J Appl Physiol 1986; 60(4): 1116–1120

[67]

Miller BF, Fattor JA, Jacobs KA, Horning MA, Navazio F, Lindinger MI, Brooks GA. Lactate and glucose interactions during rest and exercise in men: effect of exogenous lactate infusion. J Physiol 2002; 544(3): 963–975

[68]

Bergman BC, Horning MA, Casazza GA, Wolfel EE, Butterfield GE, Brooks GA. Endurance training increases gluconeogenesis during rest and exercise in men. Am J Physiol Endocrinol Metab 2000; 278(2): E244–E251

[69]

Emhoff CAW, Messonnier LA, Horning MA, Fattor JA, Carlson TJ, Brooks GA. Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. J Appl Physiol 2013; 114(3): 297–306

[70]

Stanley WC, Wisneski JA, Gertz EW, Neese RA, Brooks GA. Glucose and lactate interrelations during moderate-intensity exercise in humans. Metabolism 1988; 37(9): 850–858

[71]

Cori CF, Cori GT. The carbohydrate metabolism of tumors. I. The free sugar, lactic acid, and glycogen content of malignant tumors. J Biol Chem 1925; 64: 84944–4

[72]

Brooks GA. Cell–cell and intracellular lactate shuttles. J Physiol 2009; 587(23): 5591–5600

[73]

Brooks G. Lactate shuttles in nature. Biochem Soc Trans 2002; 30(2): 258–264

[74]

Brooks GA. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 1985; 17(1): 22–34

[75]

Brooks GA. Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise. Fed Proc 1986; 45: 2924–2929

[76]

Bergman BC, Tsvetkova T, Lowes B, Wolfel EE. Myocardial glucose and lactate metabolism during rest and atrial pacing in humans. J Physiol 2009; 587(9): 2087–2099

[77]

Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 1998; 20(4-5): 291–299

[78]

Meyer C, Stumvoll M, Dostou J, Welle S, Haymond M, Gerich J. Renal substrate exchange and gluconeogenesis in normal postabsorptive humans. Am J Physiol Endocrinol Metab 2002; 282(2): E428–E434

[79]

Butz CE, McClelland GB, Brooks GA. MCT1 confirmed in rat striated muscle mitochondria. J Appl Physiol 1985; 2004(97): 1059–1066

[80]

Hashimoto T, Hussien R, Brooks GA. Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab 2006; 290(6): E1237–E1244

[81]

Chen YJ, Mahieu NG, Huang X, Singh M, Crawford PA, Johnson SL, Gross RW, Schaefer J, Patti GJ. Lactate metabolism is associated with mammalian mitochondria. Nat Chem Biol 2016; 12(11): 937–943

[82]

Callao V, Montoya E. Toxohormone-like factor from microorganisms with impaired respiration. Science 1961; 134(3495): 2041–2042

[83]

Halestrap AP. The monocarboxylate transporter family–structure and functional characterization. IUBMB Life 2012; 64(1): 1–9

[84]

Huang Z, Gan J, Long Z, Guo G, Shi X, Wang C, Zang Y, Ding Z, Chen J, Zhang J, Dong L. Targeted delivery of let-7b to reprogramme tumor-associated macrophages and tumor infiltrating dendritic cells for tumor rejection. Biomaterials 2016; 90: 72–84

[85]

White KA, Grillo-Hill BK, Barber DL. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J Cell Sci 2017; 130(4): 663–669

[86]

Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, Menk AV, Rittenhouse NL, DePeaux K, Whetstone RD, Vignali DAA, Hand TW, Poholek AC, Morrison BM, Rothstein JD, Wendell SG, Delgoffe GM. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 2021; 591(7851): 645–651

[87]

Jacobs RA, Meinild AK, Nordsborg NB, Lundby C. Lactate oxidation in human skeletal muscle mitochondria. Am J Physiol Endocrinol Metab 2013; 304(7): E686–E694

[88]

Huang ZW, Zhang XN, Zhang L, Liu LL, Zhang JW, Sun YX, Xu JQ, Liu Q, Long ZJ. STAT5 promotes PD-L1 expression by facilitating histone lactylation to drive immunosuppression in acute myeloid leukemia. Signal Transduct Target Ther 2023; 8(1): 391

[89]

Ying M, You D, Zhu X, Cai L, Zeng S, Hu X. Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions. Redox Biol 2021; 46: 102065

[90]

Park SJ, Smith CP, Wilbur RR, Cain CP, Kallu SR, Valasapalli S, Sahoo A, Guda MR, Tsung AJ, Velpula KK. An overview of MCT1 and MCT4 in GBM: small molecule transporters with large implications. Am J Cancer Res 2018; 8: 1967–1976

[91]

Hong CS, Graham NA, Gu W, Espindola Camacho C, Mah V, Maresh EL, Alavi M, Bagryanova L, Krotee PAL, Gardner BK, Behbahan IS, Horvath S, Chia D, Mellinghoff IK, Hurvitz SA, Dubinett SM, Critchlow SE, Kurdistani SK, Goodglick L, Braas D, Graeber TG, Christofk HR. MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4. Cell Rep 2016; 14(7): 1590–1601

[92]

Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, Li H, Huet G, Yuan Q, Wigal T, Butt Y, Ni M, Torrealba J, Oliver D, Lenkinski RE, Malloy CR, Wachsmann JW, Young JD, Kernstine K, DeBerardinis RJ. Lactate metabolism in human lung tumors. Cell 2017; 171(2): 358–371.e359

[93]

Chen H, Li Y, Li H, Chen X, Fu H, Mao D, Chen W, Lan L, Wang C, Hu K. NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature 2024; 631(8021): 663–669

[94]

Chen Y, Wu J, Zhai L, Zhang T, Yin H, Gao H, Zhao F, Wang Z, Yang X, Jin M, Huang B, Ding X, Li R, Yang J, He Y, Wang Q, Wang W, Kloeber JA, Li Y, Hao B, Zhang Y, Wang J, Tan M, Li K, Wang P, Lou Z, Yuan J. Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell 2024; 187(2): 294–311.e221

[95]

Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012; 33(3): 119–126

[96]

Singh S, Mehta N, Lilan J, Budhthoki MB, Chao F, Yong L. Initiative action of tumor-associated macrophage during tumor metastasis. Biochim Open 2017; 4: 8–18

[97]

Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, Ding J, Czyz D, Hu R, Ye Z, He M, Zheng YG, Shuman HA, Dai L, Ren B, Roeder RG, Becker L, Zhao Y. Metabolic regulation of gene expression by histone lactylation. Nature 2019; 574(7779): 575–580

[98]

Yang K, Xu J, Fan M, Tu F, Wang X, Ha T, Williams DL, Li C. Lactate suppresses macrophage pro-inflammatory response to LPS stimulation by inhibition of YAP and NF-κB activation via GPR81-mediated signaling. Front Immunol 2020; 11: 587913

[99]

Zhang A, Xu Y, Xu H, Ren J, Meng T, Ni Y, Zhu Q, Zhang WB, Pan YB, Jin J, Bi Y, Wu ZB, Lin S, Lou M. Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17. Theranostics 2021; 11(8): 3839–3852

[100]

Ippolito L, Morandi A, Giannoni E, Chiarugi P. Lactate: a metabolic driver in the tumour landscape. Trends Biochem Sci 2019; 44(2): 153–166

[101]

Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014; 513(7519): 559–563

[102]

Kong X, Tang X, Du W, Tong J, Yan Y, Zheng F, Fang M, Gong F, Tan Z. Extracellular acidosis modulates the endocytosis and maturation of macrophages. Cell Immunol 2013; 281(1): 44–50

[103]

Caronni N, Simoncello F, Stafetta F, Guarnaccia C, Ruiz-Moreno JS, Opitz B, Galli T, Proux-Gillardeaux V, Benvenuti F. Downregulation of membrane trafficking proteins and lactate conditioning determine loss of dendritic cell function in lung cancer. Cancer Res 2018; 78(7): 1685–1699

[104]

Dietl K, Renner K, Dettmer K, Timischl B, Eberhart K, Dorn C, Hellerbrand C, Kastenberger M, Kunz-Schughart LA, Oefner PJ, Andreesen R, Gottfried E, Kreutz MP. Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol 2010; 184(3): 1200–1209

[105]

Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A, Kreutz M. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 2006; 107(5): 2013–2021

[106]

Brown TP, Bhattacharjee P, Ramachandran S, Sivaprakasam S, Ristic B, Sikder MOF, Ganapathy V. The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene 2020; 39(16): 3292–3304

[107]

Monti M, Vescovi R, Consoli F, Farina D, Moratto D, Berruti A, Specchia C, Vermi W. Plasmacytoid dendritic cell impairment in metastatic melanoma by lactic acidosis. Cancers (Basel) 2020; 12(8): 12

[108]

Nasi A, Fekete T, Krishnamurthy A, Snowden S, Rajnavölgyi E, Catrina AI, Wheelock CE, Vivar N, Rethi B. Dendritic cell reprogramming by endogenously produced lactic acid. J Immunol 2013; 191(6): 3090–3099

[109]

Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol 2021; 18(2): 85–100

[110]

Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, Kastenberger M, Bogdan C, Schleicher U, Mackensen A, Ullrich E, Fichtner-Feigl S, Kesselring R, Mack M, Ritter U, Schmid M, Blank C, Dettmer K, Oefner PJ, Hoffmann P, Walenta S, Geissler EK, Pouyssegur J, Villunger A, Steven A, Seliger B, Schreml S, Haferkamp S, Kohl E, Karrer S, Berneburg M, Herr W, Mueller-Klieser W, Renner K, Kreutz M. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK Cells. Cell Metab 2016; 24(5): 657–671

[111]

Harmon C, Robinson MW, Hand F, Almuaili D, Mentor K, Houlihan DD, Hoti E, Lynch L, Geoghegan J, O’Farrelly C. Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol Res 2019; 7(2): 335–346

[112]

Ge W, Meng L, Cao S, Hou C, Zhu X, Huang D, Li Q, Peng Y, Jiang K. The SIX1/LDHA axis promotes lactate accumulation and leads to NK cell dysfunction in pancreatic cancer. J Immunol Res 2023; 2023: 6891636

[113]

Jedlicka M, Feglarova T, Janstova L, Hortova-Kohoutkova M, Fric J. Lactate from the tumor microenvironment—a key obstacle in NK cell-based immunotherapies. Front Immunol 2022; 13: 932055

[114]

Husain Z, Seth P, Sukhatme VP. Tumor-derived lactate and myeloid-derived suppressor cells: linking metabolism to cancer immunology. OncoImmunology 2013; 2(11): e26383

[115]

XieSDLZhuBai. Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling

[116]

Fu S, He K, Tian C, Sun H, Zhu C, Bai S, Liu J, Wu Q, Xie D, Yue T, Shen Z, Dai Q, Yu X, Zhu S, Liu G, Zhou R, Duan S, Tian Z, Xu T, Wang H, Bai L. Impaired lipid biosynthesis hinders anti-tumor efficacy of intratumoral iNKT cells. Nat Commun 2020; 11(1): 438

[117]

Angelin A, Gil-de-Gomez L, Dahiya S, Jiao J, Guo L, Levine MH, Wang Z, Quinn WJ 3rd, Kopinski PK, Wang L, Akimova T, Liu Y, Bhatti TR, Han R, Laskin BL, Baur JA, Blair IA, Wallace DC, Hancock WW, Beier UH. Foxp3 reprograms T Cell metabolism to function in low-glucose, high-lactate environments. Cell Metab 2017; 25(6): 1282–1293.e1287

[118]

Comito G, Iscaro A, Bacci M, Morandi A, Ippolito L, Parri M, Montagnani I, Raspollini MR, Serni S, Simeoni L, Giannoni E, Chiarugi P. Lactate modulates CD4+ T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis. Oncogene 2019; 38(19): 3681–3695

[119]

Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X, Shao Q, Zhou B, Zhou H, Wei S, Wang Q, Liang Y, Lu L. Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-beta signaling in regulatory T cells. Cell Rep 2022; 40(3): 111122

[120]

Ding R, Yu X, Hu Z, Dong Y, Huang H, Zhang Y, Han Q, Ni ZY, Zhao R, Ye Y, Zou Q. Lactate modulates RNA splicing to promote CTLA-4 expression in tumor-infiltrating regulatory T cells. Immunity 2024; 57(3): 528–540.e526

[121]

Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K, Timischl B, Mackensen A, Kunz-Schughart L, Andreesen R, Krause SW, Kreutz M. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 2007; 109(9): 3812–3819

[122]

Amjad S, Nisar S, Bhat AA, Shah AR, Frenneaux MP, Fakhro K, Haris M, Reddy R, Patay Z, Baur J, Bagga P. Role of NAD+ in regulating cellular and metabolic signaling pathways. Mol Metab 2021; 49: 101195

[123]

Quinn WJ 3rd, Jiao J, TeSlaa T, Stadanlick J, Wang Z, Wang L, Akimova T, Angelin A, Schafer PM, Cully MD, Perry C, Kopinski PK, Guo L, Blair IA, Ghanem LR, Leibowitz MS, Hancock WW, Moon EK, Levine MH, Eruslanov EB, Wallace DC, Baur JA, Beier UH. Lactate limits T cell proliferation via the NAD(H) redox state. Cell Rep 2020; 33(11): 108500

[124]

Karthikeyan S, Geschwind JF, Ganapathy-Kanniappan S. Tumor cells and memory T cells converge at glycolysis: therapeutic implications. Cancer Biol Ther 2014; 15(5): 483–485

[125]

Liu Y, Wang F, Peng D, Zhang D, Liu L, Wei J, Yuan J, Zhao L, Jiang H, Zhang T, Li Y, Zhao C, He S, Wu J, Yan Y, Zhang P, Guo C, Zhang J, Li X, Gao H, Li K. Activation and antitumor immunity of CD8+ T cells are supported by the glucose transporter GLUT10 and disrupted by lactic acid. Sci Transl Med 2024; 16(762): eadk7399

[126]

Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K, Timischl B, Mackensen A, Kunz-Schughart L, Andreesen R, Krause SW, Kreutz M. Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood 2007; 109(9): 3812–3819

[127]

Tu VY, Ayari A, O’Connor RS. Beyond the lactate paradox: how lactate and acidity impact T cell therapies against cancer. Antibodies (Basel) 2021; 10(3): 25

[128]

Wang J, Z Y, Shang H, Qiu M, Cheng E, Tao X, Xie W, Pei L, Li A, Zhang G. Suppression of the METTL3-m6A-integrin β1 axis by extracellular acidification impairs T cell infiltration and antitumor activity. Cell Rep. 2024; 43(2): 113796

[129]

Kouidhi S, Elgaaied AB, Chouaib S. Impact of metabolism in on T-cell differentiation and function and cross talk with tumor microenvironment. Front Immunol 2017; 8: 270

[130]

Wu H, Estrella V, Beatty M, Abrahams D, El-Kenawi A, Russell S, Ibrahim-Hashim A, Longo DL, Reshetnyak YK, Moshnikova A, Andreev OA, Luddy K, Damaghi M, Kodumudi K, Pillai SR, Enriquez-Navas P, Pilon-Thomas S, Swietach P, Gillies RJ. T-cells produce acidic niches in lymph nodes to suppress their own effector functions. Nat Commun 2020; 11(1): 11

[131]

Chen Y, Feng Z, Kuang X, Zhao P, Chen B, Fang Q, Cheng W, Wang J. Increased lactate in AML blasts upregulates TOX expression, leading to exhaustion of CD8+ cytolytic T cells. Am J Cancer Res 2021; 11: 5726–5742

[132]

Harmon C, O’Farrelly C, Robinson MW. The immune consequences of lactate in the tumor microenvironment. Adv Exp Med Biol 2020; 1259: 113–124

[133]

Singer K, Kastenberger M, Gottfried E, Hammerschmied CG, Buttner M, Aigner M, Seliger B, Walter B, Schlosser H, Hartmann A, Andreesen R, Mackensen A, Kreutz M. Warburg phenotype in renal cell carcinoma: high expression of glucose-transporter 1 (GLUT-1) correlates with low CD8+ T-cell infiltration in the tumor. Int J Cancer 2011; 128(9): 2085–2095

[134]

Cheng H, Qiu Y, Xu Y, Chen L, Ma K, Tao M, Frankiw L, Yin H, Xie E, Pan X, Du J, Wang Z, Zhu W, Chen L, Zhang L, Li G. Extracellular acidosis restricts one-carbon metabolism and preserves T cell stemness. Nat Metab 2023; 5(2): 314–330

[135]

Yang D, Liu J, Qian H, Zhuang Q. Cancer-associated fibroblasts: from basic science to anticancer therapy. Exp Mol Med 2023; 55(7): 1322–1332

[136]

Gu X, Zhu Y, Su J, Wang S, Su X, Ding X, Jiang L, Fei X, Zhang W. Lactate-induced activation of tumor-associated fibroblasts and IL-8-mediated macrophage recruitment promote lung cancer progression. Redox Biol 2024; 74: 103209

[137]

Linares JF, Cid-Diaz T, Duran A, Osrodek M, Martinez-Ordonez A, Reina-Campos M, Kuo HH, Elemento O, Martin ML, Cordes T, Thompson TC, Metallo CM, Moscat J, Diaz-Meco MT. The lactate-NAD+ axis activates cancer-associated fibroblasts by downregulating p62. Cell Rep 2022; 39(6): 110792

[138]

Apicella M, Giannoni E, Fiore S, Ferrari KJ, Fernandez-Perez D, Isella C, Granchi C, Minutolo F, Sottile A, Comoglio PM, Medico E, Pietrantonio F, Volante M, Pasini D, Chiarugi P, Giordano S, Corso S. Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies. Cell Metab 2018; 28(6): 848–865.e846

[139]

Végran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 2011; 71(7): 2550–2560

[140]

Zhang D, Li J, Wang F, Hu J, Wang S, Sun Y. 2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Lett 2014; 355(2): 176–183

[141]

Bizjak M, Malavasic P, Dolinar K, Pohar J, Pirkmajer S, Pavlin M. Combined treatment with Metformin and 2-deoxy glucose induces detachment of viable MDA-MB-231 breast cancer cells in vitro. Sci Rep 2017; 7(1): 1761

[142]

Sukumar M, Liu J, Ji Y, Subramanian M, Crompton JG, Yu Z, Roychoudhuri R, Palmer DC, Muranski P, Karoly ED, Mohney RP, Klebanoff CA, Lal A, Finkel T, Restifo NP, Gattinoni L. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Invest 2013; 123(10): 4479–4488

[143]

Papaconstantinou J, Colowick SP. The role of glycolysis in the growth of tumor cells. II. The effect of oxamic acid on the growth of HeLa cells in tissue culture. J Biol Chem 1961; 236(2): 285–288

[144]

Altinoz MA, Ozpinar A. Oxamate targeting aggressive cancers with special emphasis to brain tumors. Biomed Pharmacother 2022; 147: 112686

[145]

Hollenberg AM, Smith CO, Shum LC, Awad H, Eliseev RA. Lactate dehydrogenase inhibition with Oxamate Exerts Bone Anabolic Effect. J Bone Miner Res 2020; 35(12): 2432–2443

[146]

Chirasani SR, Leukel P, Gottfried E, Hochrein J, Stadler K, Neumann B, Oefner PJ, Gronwald W, Bogdahn U, Hau P, Kreutz M, Grauer OM. Diclofenac inhibits lactate formation and efficiently counteracts local immune suppression in a murine glioma model. Int J Cancer 2013; 132(4): 843–853

[147]

Xie H, Yin J, Shah MH, Menefee ME, Bible KC, Reidy-Lagunes D, Kane MA, Quinn DI, Gandara DR, Erlichman C, Adjei AA. A phase II study of the orally administered negative enantiomer of gossypol (AT-101), a BH3 mimetic, in patients with advanced adrenal cortical carcinoma. Invest New Drugs 2019; 37(4): 755–762

[148]

Cheng CS, Tan HY, Wang N, Chen L, Meng Z, Chen Z, Feng Y. Functional inhibition of lactate dehydrogenase suppresses pancreatic adenocarcinoma progression. Clin Transl Med 2021; 11(6): e467

[149]

Renner O, Mayer M, Leischner C, Burkard M, Berger A, Lauer UM, Venturelli S, Bischoff SC. Systematic review of gossypol/AT-101 in cancer clinical trials. Pharmaceuticals (Basel) 2022; 15(2): 15

[150]

Wang Y, Li X, Zhang L, Li M, Dai N, Luo H, Shan J, Yang X, Xu M, Feng Y, Xu C, Qian C, Wang D. A randomized, double-blind, placebo-controlled study of B-cell lymphoma 2 homology 3 mimetic gossypol combined with docetaxel and cisplatin for advanced non-small cell lung cancer with high expression of apurinic/apyrimidinic endonuclease 1. Invest New Drugs 2020; 38(6): 1862–1871

[151]

Benjamin D, Colombi M, Hindupur SK, Betz C, Lane HA, El-Shemerly MY, Lu M, Quagliata L, Terracciano L, Moes S, Sharpe T, Wodnar-Filipowicz A, Moroni C, Hall MN. Syrosingopine sensitizes cancer cells to killing by metformin. Sci Adv 2016; 2(12): e1601756

[152]

Benyahia Z, Blackman M, Hamelin L, Zampieri LX, Capeloa T, Bedin ML, Vazeille T, Schakman O, Sonveaux P. In vitro and in vivo characterization of MCT1 inhibitor AZD3965 confirms preclinical safety compatible with breast Cancer treatment. Cancers (Basel) 2021; 13(3): 569

[153]

Chaudagar K, Hieromnimon HM, Khurana R, Labadie B, Hirz T, Mei S, Hasan R, Shafran J, Kelley A, Apostolov E, Al-Eryani G, Harvey K, Rameshbabu S, Loyd M, Bynoe K, Drovetsky C, Solanki A, Markiewicz E, Zamora M, Fan X, Schurer S, Swarbrick A, Sykes DB, Patnaik A. Reversal of lactate and PD-1-mediated macrophage immunosuppression controls growth of PTEN/p53-deficient prostate cancer. Clin Cancer Res 2023; 29(10): 1952–1968

[154]

Sun LH, Zhang Y, Yang BY, Sun SJ, Zhang PS, Luo Z, Feng TT, Cui ZL, Zhu T, Li YM, Qiu ZJ, Fan GJ, Huang C. Lactylation of METTL16 promotes cuproptosis via m6A-modification on mRNA in gastric cancer. Nat Commun 2023; 14(1): 14

[155]

Zheng PJ, Zhou CT, Lu LY, Liu B, Ding YM. Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res 2022; 41(1): 41

[156]

Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A, Kreutz M. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 2006; 107(5): 2013–2021

[157]

Xia H, Wang W, Crespo J, Kryczek I, Li W, Wei S, Bian Z, Maj T, He M, Liu RJ, He Y, Rattan R, Munkarah A, Guan JL, Zou W. Suppression of FIP200 and autophagy by tumor-derived lactate promotes naive T cell apoptosis and affects tumor immunity. Sci Immunol 2017; 2(17): 2

[158]

Harmon C, Robinson MW, Hand F, Almuaili D, Mentor K, Houlihan DD, Hoti E, Lynch L, Geoghegan J, O’Farrelly C. Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol Res 2019; 7(2): 335–346

[159]

Puig-Kroger A, Pello OM, Muniz-Pello O, Selgas R, Criado G, Bajo MA, Sanchez-Tomero JA, Alvarez V, del Peso G, Sanchez-Mateos P, Holmes C, Faict D, Lopez-Cabrera M, Madrenas J, Corbi AL. Peritoneal dialysis solutions inhibit the differentiation and maturation of human monocyte-derived dendritic cells: effect of lactate and glucose-degradation products. J Leukoc Biol 2003; 73(4): 482–492

[160]

Gottfried E, Kunz-Schughart LA, Andreesen R, Kreutz M. Brave little world- spheroids as an in vitro model to study tumor-immune-cell interactions. Cell Cycle 2006; 5(7): 691–695

[161]

Mu X, Shi W, Xu Y, Xu C, Zhao T, Geng B, Yang J, Pan J, Hu S, Zhang C, Zhang J, Wang C, Shen J, Che Y, Liu Z, Lv Y, Wen H, You Q. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell Cycle 2018; 17(4): 428–438

[162]

Feng R, Morine Y, Ikemoto T, Imura S, Iwahashi S, Saito Y, Shimada M. Nrf2 activation drive macrophages polarization and cancer cell epithelial-mesenchymal transition during interaction. Cell Commun Signal 2018; 16(1): 54

[163]

Liu H, Liang Z, Zhou C, Zeng Z, Wang F, Hu T, He X, Wu X, Wu X, Lan P. Mutant KRAS triggers functional reprogramming of tumor-associated macrophages in colorectal cancer. Signal Transduct Target Ther 2021; 6(1): 144

[164]

Zhao JL, Ye YC, Gao CC, Wang L, Ren KX, Jiang R, Hu SJ, Liang SQ, Bai J, Liang JL, Ma PF, Hu YY, Li BC, Nie YZ, Chen Y, Li XF, Zhang W, Han H, Qin HY. Notch-mediated lactate metabolism regulates MDSC development through the Hes1/MCT2/c-Jun axis. Cell Rep 2022; 38(10): 38

[165]

Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014; 513(7519): 559–563

[166]

Kumagai S, Koyama S, Itahashi K, Tanegashima T, Lin YT, Togashi Y, Kamada T, Irie T, Okumura G, Kono H, Ito D, Fujii R, Watanabe S, Sai A, Fukuoka S, Sugiyama E, Watanabe G, Owari T, Nishinakamura H, Sugiyama D, Maeda Y, Kawazoe A, Yukami H, Chida K, Ohara Y, Yoshida T, Shinno Y, Takeyasu Y, Shirasawa M, Nakama K, Aokage K, Suzuki J, Ishii G, Kuwata T, Sakamoto N, Kawazu M, Ueno T, Mori T, Yamazaki N, Tsuboi M, Yatabe Y, Kinoshita T, Doi T, Shitara K, Mano H, Nishikawa H. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell 2022; 40(2): 201–218.e209

[167]

Xie M, Fu XG, Jiang K. Notch1/TAZ axis promotes aerobic glycolysis and immune escape in lung cancer. Cell Death Dis 2021; 12(9): 832

[168]

Pötzl J, Roser D, Bankel L, Hömberg N, Geishauser A, Brenner CD, Weigand M, Röcken M, Mocikat R. Reversal of tumor acidosis by systemic buffering reactivates NK cells to express IFN-γ and induces NK cell-dependent lymphoma control without other immunotherapies. Int J Cancer 2017; 140(9): 2125–2133

[169]

Husain Z, Huang Y, Seth P, Sukhatme VP. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol 2013; 191(3): 1486–1495

[170]

Wang X, Luo X, Chen C, Tang Y, Li L, Mo B, Liang H, Yu S. The Ap-2alpha/Elk-1 axis regulates Sirpalpha-dependent tumor phagocytosis by tumor-associated macrophages in colorectal cancer. Signal Transduct Target Ther 2020; 5(1): 35

[171]

Kumagai S, Togashi Y, Sakai C, Kawazoe A, Kawazu M, Ueno T, Sato E, Kuwata T, Kinoshita T, Yamamoto M, Nomura S, Tsukamoto T, Mano H, Shitara K, Nishikawa H. An oncogenic alteration creates a microenvironment that promotes tumor progression by conferring a metabolic advantage to regulatory T cells. Immunity 2020; 53(1): 187–203.e8

[172]

Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, Agrawal K, Gonzalez GM, Wang Y, Patel SP, Rana TM. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci USA 2020; 117(33): 20159–20170

[173]

Fujimura T, Kambayashi Y, Aiba S. Crosstalk between regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs) during melanoma growth. OncoImmunology 2012; 1(8): 1433–1434

[174]

Rostamian H, Khakpoor-Koosheh M, Jafarzadeh L, Masoumi E, Fallah-Mehrjardi K, Tavassolifar MJ. J MP, Mirzaei HR and Hadjati J. Restricting tumor lactic acid metabolism using dichloroacetate improves T cell functions. BMC Cancer 2022; 22: 39

[175]

Renner K, Bruss C, Schnell A, Koehl G, Becker HM, Fante M, Menevse AN, Kauer N, Blazquez R, Hacker L, Decking SM, Bohn T, Faerber S, Evert K, Aigle L, Amslinger S, Landa M, Krijgsman O, Rozeman EA, Brummer C, Siska PJ, Singer K, Pektor S, Miederer M, Peter K, Gottfried E, Herr W, Marchiq I, Pouyssegur J, Roush WR, Ong S, Warren S, Pukrop T, Beckhove P, Lang SA, Bopp T, Blank CU, Cleveland JL, Oefner PJ, Dettmer K, Selby M, Kreutz M. Restricting glycolysis preserves T cell effector functions and augments checkpoint therapy. Cell Rep 2019; 29(1): 135–150.e139

[176]

Daneshmandi S, Wegiel B, Seth P. Blockade of lactate dehydrogenase-A (LDH-A) improves efficacy of anti-programmed cell death-1 (PD-1) therapy in melanoma. Cancers (Basel) 2019; 11(4): 11

[177]

Chavarria V, Ortiz-Islas E, Salazar A, Perez-de la Cruz V, Espinosa-Bonilla A, Figueroa R, Ortiz-Plata A, Sotelo J, Sanchez-Garcia FJ, Pineda B. Lactate-loaded nanoparticles induce glioma cytotoxicity and increase the survival of rats bearing malignant glioma brain tumor. Pharmaceutics 2022; 14(2): 14

[178]

Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004; 287(3): R502–R516

[179]

Cheng Q, Shi XL, Li QL, Wang L, Wang Z. Current advances on nanomaterials interfering with lactate metabolism for tumor therapy. Adv Sci (Weinh) 2024; 11(3): e2305662

[180]

Li Y, Wei Y, Huang Y, Qin G, Zhao C, Ren J, Qu X. Lactate-responsive gene editing to synergistically enhance macrophage-mediated cancer immunotherapy. Small 2023; 19(35): e2301519

[181]

Ma JW, Tang L, Tan YY, Xiao JX, Wei KK, Zhang X, Ma Y, Tong S, Chen J, Zhou NN, Yang L, Lei Z, Li YG, Lv JD, Liu JW, Zhang HF, Tang K, Zhang Y, Huang B. Lithium carbonate revitalizes tumor-reactive CD8+ T cells by shunting lactic acid into mitochondria. Nat Immunol 2024; 25(3): 25

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3356KB)

1581

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/