lncRNA Gm20257 alleviates pathological cardiac hypertrophy by modulating the PGC-1α–mitochondrial complex IV axis

Tong Yu , Qiang Gao , Guofang Zhang , Tianyu Li , Xiaoshan Liu , Chao Li , Lan Zheng , Xiang Sun , Jianbo Wu , Huiying Cao , Fangfang Bi , Ruifeng Wang , Haihai Liang , Xuelian Li , Yuhong Zhou , Lifang Lv , Hongli Shan

Front. Med. ›› 2024, Vol. 18 ›› Issue (4) : 664 -677.

PDF (19261KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (4) : 664 -677. DOI: 10.1007/s11684-024-1065-7
RESEARCH ARTICLE

lncRNA Gm20257 alleviates pathological cardiac hypertrophy by modulating the PGC-1α–mitochondrial complex IV axis

Author information +
History +
PDF (19261KB)

Abstract

Pathological cardiac hypertrophy, a major contributor to heart failure, is closely linked to mitochondrial function. The roles of long noncoding RNAs (lncRNAs), which regulate mitochondrial function, remain largely unexplored in this context. Herein, a previously unknown lncRNA, Gm20257, was identified. It markedly increased under hypertrophic stress in vivo and in vitro. The suppression of Gm20257 by using small interfering RNAs significantly induced cardiomyocyte hypertrophy. Conversely, the overexpression of Gm20257 through plasmid transfection or adeno-associated viral vector-9 mitigated angiotensin II–induced hypertrophic phenotypes in neonatal mouse ventricular cells or alleviated cardiac hypertrophy in a mouse TAC model respectively, thus restoring cardiac function. Importantly, Gm20257 restored mitochondrial complex IV level and enhanced mitochondrial function. Bioinformatics prediction showed that Gm20257 had a high binding score with peroxisome proliferator–activated receptor coactivator-1 (PGC-1α), which could increase mitochondrial complex IV. Subsequently, Western blot analysis results revealed that Gm20257 substantially affected the expression of PGC-1α. Further analyses through RNA immunoprecipitation and immunoblotting following RNA pull-down indicated that PGC-1α was a direct downstream target of Gm20257. This interaction was demonstrated to rescue the reduction of mitochondrial complex IV induced by hypertrophic stress and promote the generation of mitochondrial ATP. These findings suggest that Gm20257 improves mitochondrial function through the PGC-1α–mitochondrial complex IV axis, offering a novel approach for attenuating pathological cardiac hypertrophy.

Keywords

lncRNA Gm20257 / cardiac hypertrophy / PGC-1α / mitochondrial complex IV / ATP

Cite this article

Download citation ▾
Tong Yu, Qiang Gao, Guofang Zhang, Tianyu Li, Xiaoshan Liu, Chao Li, Lan Zheng, Xiang Sun, Jianbo Wu, Huiying Cao, Fangfang Bi, Ruifeng Wang, Haihai Liang, Xuelian Li, Yuhong Zhou, Lifang Lv, Hongli Shan. lncRNA Gm20257 alleviates pathological cardiac hypertrophy by modulating the PGC-1α–mitochondrial complex IV axis. Front. Med., 2024, 18(4): 664-677 DOI:10.1007/s11684-024-1065-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aung LHH, Jumbo JCC, Wang Y, Li P. Therapeutic potential and recent advances on targeting mitochondrial dynamics in cardiac hypertrophy: a concise review. Mol Ther Nucleic Acids 2021; 25: 416–443

[2]

Shah AK, Bhullar SK, Elimban V, Dhalla NS. Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants (Basel) 2021; 10(6): 931

[3]

Roger VL. Epidemiology of heart failure: a contemporary perspective. Circ Res 2021; 128(10): 1421–1434

[4]

Nijholt KT, Sánchez-Aguilera PI, Voorrips SN, de Boer RA, Westenbrink BD. Exercise: a molecular tool to boost muscle growth and mitochondrial performance in heart failure?. Eur J Heart Fail 2022; 24(2): 287–298

[5]

Abbas N, Perbellini F, Thum T. Non-coding RNAs: emerging players in cardiomyocyte proliferation and cardiac regeneration. Basic Res Cardiol 2020; 115(5): 52

[6]

Xie L, Zhang Q, Mao J, Zhang J, Li L. The roles of lncRNA in myocardial infarction: molecular mechanisms, diagnosis biomarkers, and therapeutic perspectives. Front Cell Dev Biol 2021; 9: 680713

[7]

Chen Y, Li Z, Chen X, Zhang S. Long non-coding RNAs: from disease code to drug role. Acta Pharm Sin B 2021; 11(2): 340–354

[8]

Sallam T, Sandhu J, Tontonoz P. Long noncoding RNA discovery in cardiovascular disease: decoding form to function. Circ Res 2018; 122(1): 155–166

[9]

Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J, Just A, Fendrich J, Scherf K, Bolesani E, Schambach A, Weidemann F, Zweigerdt R, de Windt LJ, Engelhardt S, Dandekar T, Batkai S, Thum T. Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 2016; 8(326): 326ra22

[10]

Zhang L, Li F, Su X, Li Y, Wang Y, Fang R, Guo Y, Jin T, Shan H, Zhao X, Yang R, Shan H, Liang H. Melatonin prevents lung injury by regulating apelin 13 to improve mitochondrial dysfunction. Exp Mol Med 2019; 51(7): 1–12

[11]

Jusic A, Devaux Y; EU-CardioRNA COST Action (CA17129). Mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic Res Cardiol 2020; 115(3): 23

[12]

Bhullar SK, Dhalla NS. Angiotensin II-induced signal transduction mechanisms for cardiac hypertrophy. Cells 2022; 11(21): 3336

[13]

Nah J, Shirakabe A, Mukai R, Zhai P, Sung EA, Ivessa A, Mizushima W, Nakada Y, Saito T, Hu C, Jung YK, Sadoshima J. Ulk1-dependent alternative mitophagy plays a protective role during pressure overload in the heart. Cardiovasc Res 2022; 118(12): 2638–2651

[14]

Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res 2004; 95(6): 568–578

[15]

Anand P, Akhter Y. A review on enzyme complexes of electron transport chain from Mycobacterium tuberculosis as promising drug targets. Int J Biol Macromol 2022; 212: 474–494

[16]

Bugger H, Schwarzer M, Chen D, Schrepper A, Amorim PA, Schoepe M, Nguyen TD, Mohr FW, Khalimonchuk O, Weimer BC, Doenst T. Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure. Cardiovasc Res 2010; 85(2): 376–384

[17]

Dai DF, Hsieh EJ, Liu Y, Chen T, Beyer RP, Chin MT, MacCoss MJ, Rabinovitch PS. Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress. Cardiovasc Res 2012; 93(1): 79–88

[18]

Kadenbach B. Regulation of mammalian 13-subunit cytochrome c oxidase and binding of other proteins: role of NDUFA4. Trends Endocrinol Metab 2017; 28(11): 761–770

[19]

Chen L, Qin Y, Liu B, Gao M, Li A, Li X, Gong G. PGC-1α-mediated mitochondrial quality control: molecular mechanisms and implications for heart failure. Front Cell Dev Biol 2022; 10: 871357

[20]

Russell LK, Mansfield CM, Lehman JJ, Kovacs A, Courtois M, Saffitz JE, Medeiros DM, Valencik ML, McDonald JA, Kelly DP. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res 2004; 94(4): 525–533

[21]

Finck BN, Kelly DP. Peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 2007; 115(19): 2540–2548

[22]

Huss JM, Imahashi K, Dufour CR, Weinheimer CJ, Courtois M, Kovacs A, Giguère V, Murphy E, Kelly DP. The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab 2007; 6(1): 25–37

[23]

Hu X, Xu X, Huang Y, Fassett J, Flagg TP, Zhang Y, Nichols CG, Bache RJ, Chen Y. Disruption of sarcolemmal ATP-sensitive potassium channel activity impairs the cardiac response to systolic overload. Circ Res 2008; 103(9): 1009–1017

[24]

Luo S, Zhang M, Wu H, Ding X, Li D, Dong X, Hu X, Su S, Shang W, Wu J, Xiao H, Yang W, Zhang Q, Zhang J, Lu Y, Pan Z. SAIL: a new conserved anti-fibrotic lncRNA in the heart. Basic Res Cardiol 2021; 116(1): 15

[25]

Yang R, Li L, Hou Y, Li Y, Zhang J, Yang N, Zhang Y, Ji W, Yu T, Lv L, Liang H, Li X, Li T, Shan H. Long non-coding RNA KCND1 protects hearts from hypertrophy by targeting YBX1. Cell Death Dis 2023; 14(5): 344

[26]

Zhang Y, Zhang X, Cai B, Li Y, Jiang Y, Fu X, Zhao Y, Gao H, Yang Y, Yang J, Li S, Wu H, Jin X, Xue G, Yang J, Ma W, Han Q, Tian T, Li Y, Yang B, Lu Y, Pan Z. The long noncoding RNA lncCIRBIL disrupts the nuclear translocation of Bclaf1 alleviating cardiac ischemia-reperfusion injury. Nat Commun 2021; 12(1): 522

[27]

Luo YX, Tang X, An XZ, Xie XM, Chen XF, Zhao X, Hao DL, Chen HZ, Liu DP. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur Heart J 2017; 38(18): 1389–1398

[28]

Gao R, Wang L, Bei Y, Wu X, Wang J, Zhou Q, Tao L, Das S, Li X, Xiao J. Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation 2021; 144(4): 303–317

[29]

Zhang Y, Ye Y, Tang X, Wang H, Tanaka T, Tian R, Yang X, Wang L, Xiao Y, Hu X, Jin Y, Pang H, Du T, Liu H, Sun L, Xiao S, Dong R, Ferrucci L, Tian Z, Zhang S. CCL17 acts as a novel therapeutic target in pathological cardiac hypertrophy and heart failure. J Exp Med 2022; 219(8): e20200418

[30]

Yousefi K, Irion CI, Takeuchi LM, Ding W, Lambert G, Eisenberg T, Sukkar S, Granzier HL, Methawasin M, Lee DI, Hahn VS, Kass DA, Hatzistergos KE, Hare JM, Webster KA, Shehadeh LA. Osteopontin promotes left ventricular diastolic dysfunction through a mitochondrial pathway. J Am Coll Cardiol 2019; 73(21): 2705–2718

[31]

Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 2018; 15(7): 387–407

[32]

Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res 2013; 113(6): 709–724

[33]

Rosca MG, Tandler B, Hoppel CL. Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol 2013; 55: 31–41

[34]

Geldon S, Fernandez-Vizarra E, Tokatlidis K. Redox-mediated regulation of mitochondrial biogenesis, dynamics, and respiratory chain assembly in yeast and human cells. Front Cell Dev Biol 2021; 9: 720656

[35]

Zhang Y, Sun L, Xuan L, Pan Z, Hu X, Liu H, Bai Y, Jiao L, Li Z, Cui L, Wang X, Wang S, Yu T, Feng B, Guo Y, Liu Z, Meng W, Ren H, Zhu J, Zhao X, Yang C, Zhang Y, Xu C, Wang Z, Lu Y, Shan H, Yang B. Long non-coding RNA CCRR controls cardiac conduction via regulating intercellular coupling. Nat Commun 2018; 9(1): 4176

[36]

Lv L, Li T, Li X, Xu C, Liu Q, Jiang H, Li Y, Liu Y, Yan H, Huang Q, Zhou Y, Zhang M, Shan H, Liang H. The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol Ther Nucleic Acids 2018; 10: 387–397

[37]

Zhang M, Jiang Y, Guo X, Zhang B, Wu J, Sun J, Liang H, Shan H, Zhang Y, Liu J, Wang Y, Wang L, Zhang R, Yang B, Xu C. Long non-coding RNA cardiac hypertrophy-associated regulator governs cardiac hypertrophy via regulating miR-20b and the downstream PTEN/AKT pathway. J Cell Mol Med 2019; 23(11): 7685–7698

[38]

Nývltová E, Dietz JV, Seravalli J, Khalimonchuk O, Barrientos A. Coordination of metal center biogenesis in human cytochrome c oxidase. Nat Commun 2022; 13(1): 3615

[39]

Buchwald A, Till H, Unterberg C, Oberschmidt R, Figulla HR, Wiegand V. Alterations of the mitochondrial respiratory chain in human dilated cardiomyopathy. Eur Heart J 1990; 11(6): 509–516

[40]

Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A, Rustin P, Brüning JC, Kahn CR, Clayton DA, Barsh GS, Thorén P, Larsson NG. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 1999; 21(1): 133–137

[41]

Hayashi M, Imanaka-Yoshida K, Yoshida T, Wood M, Fearns C, Tatake RJ, Lee JD. A crucial role of mitochondrial Hsp40 in preventing dilated cardiomyopathy. Nat Med 2006; 12(1): 128–132

[42]

Chen LL. Linking long noncoding RNA localization and function. Trends Biochem Sci 2016; 41(9): 761–772

[43]

Liu L, An X, Li Z, Song Y, Li L, Zuo S, Liu N, Yang G, Wang H, Cheng X, Zhang Y, Yang X, Wang J. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 2016; 111(1): 56–65

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (19261KB)

Supplementary files

FMD-24007-OF-SHL_suppl_1

3100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/