State-of-the-art of intelligent minimally invasive surgical robots

Masakatsu G. Fujie , Bo Zhang

Front. Med. ›› 2020, Vol. 14 ›› Issue (4) : 404 -416.

PDF (2823KB)
Front. Med. ›› 2020, Vol. 14 ›› Issue (4) : 404 -416. DOI: 10.1007/s11684-020-0743-3
REVIEW
REVIEW

State-of-the-art of intelligent minimally invasive surgical robots

Author information +
History +
PDF (2823KB)

Abstract

A number of developed countries are rapidly turning into super-aged societies. Consequently, the demand for reduced surgical invasiveness and enhanced efficiency in the medical field has increased due to the need to reduce the physical burden on older patients and shorten their recovery period. Intelligent surgical robot systems offer high precision, high safety, and reduced invasiveness. This paper presents a review of current intelligent surgical robot systems. The history of robots and three types of intelligent surgical robots are discussed. The problems with current surgical robot systems are then analyzed. Several aspects that should be considered in designing new surgical systems are discussed in detail. The paper ends with a summary of the work and a discussion of future prospects for surgical robot development.

Keywords

robot history / medical robot / surgical robot / radiofrequency ablation / organ model

Cite this article

Download citation ▾
Masakatsu G. Fujie, Bo Zhang. State-of-the-art of intelligent minimally invasive surgical robots. Front. Med., 2020, 14(4): 404-416 DOI:10.1007/s11684-020-0743-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rowe JW, Kahn RL. Successful aging. Gerontologist 1997; 37(4): 433–440

[2]

Uhlenberg P. International Handbook of Population Aging. Springer 2009

[3]

Cavanaugh JC, Blanchard-Fields F. Adult Development and Aging. Cengage Learning 2017

[4]

Woods MB, Woods M. Ancient Transportation Technology: From Oars to Elephants. Twenty-First Century Books 2010: 48

[5]

Yokota Y. A historical overview of Japanese clocks and karakuri. In: Yan HS, Ceccarelli M. International Symposium on History of Machines and Mechanisms. Springer, Dordrecht. 2009: 175–188

[6]

Weston RH, Gascoigne JD, Sumpter CM. Intelligent interfaces for robots. Control Theory A 1985; 132(4): 168–173

[7]

Gasparetto A, Scalera L. A brief history of industrial robotics in the 20th century. Advances in Historical Studies 2019; 8: 24–35

[8]

Koganezawa K, Fujimoto H, Kato I. Multifunctional above-knee prosthesis for stairs’ walking. Prosthet Orthot Int 1987; 11(3): 139–145

[9]

Kato I. Trends in powered upper limb prostheses. Prosthet Orthot Int 1978; 2(2): 64–68

[10]

Tesar D. Where Is The Field of Robotics Going. Springer 1999: 1–12

[11]

Yang C, Zhang J, Chen Y, Dong Y, Zhang Y. A review of exoskeleton-type systems and their key technologies. Proc Inst Mech Eng, C J Mech Eng Sci 2008; 222(8): 1599–1612

[12]

Hartley J. New robot designs give increased production. Ind Rob 1980; 7(3): 186–188

[13]

Visioli A, Legnani G. On the trajectory tracking control of industrial SCARA robot manipulators. IEEE Trans Ind Electron 2002; 49(1): 224–232

[14]

Sprenger B, Kucera L, Mourad S. Balancing of an inverted pendulum with a SCARA robot. IEEE/ASME Trans Mechatron 1998; 3(2): 91–97

[15]

Tarn T, Bejczy A, Yun X. Coordinated control of two robot arms. IEEE Int Conf Robot Autom 1986: 468–473

[16]

Chimes P. Multiple-arm Robot Control Systems. Robotics Age 1985: 5–10

[17]

Taggart W, Turkle S, Kidd C. An interactive robot in a nursing home: preliminary remarks. CogSci Android Science Workshop 2005

[18]

Sugano S, Kato I. WABOT-2: Autonomous robot with dexterous finger-arm—finger-arm coordination control in keyboard performance. IEEE Int Conf Robot Autom 1987: 90–97

[19]

Abdulrazak B, Mokhtari M. Assistive robotics for independent living. The Engineering Handbook of Smart Technology for Aging, Disability, and Independence. 2008: 355–374

[20]

Takanishi A. In memoriam: Professor Ichiro Kato. Auton Robots 1995; 2(1): 7–10

[21]

Ichiryu K, Watanabe H, Nogami T, Nakamura I, Fujie M. Realization of biped robot by hydraulic drive. Proc JFPS Int Symp Fluid Power 1989: 421–428

[22]

Sugano S. Limb control of the robot musician ‘WABOT-2’. Int Conf Adv Robotics 1985

[23]

Sugano S. Keyboard playing by an anthropomorphic robot. Theory and Practice of Robots and Manipulators (Fifth CISM-IFToMM Symp) 1985

[24]

Sakakibara Y, Kan K, Hosoda Y, Hattori M, Fujie M. Low impact foot trajectory for a quadruped walking machine. JRSJ 1990: 662–671

[25]

Pomerleau D. Alvinn: An autonomous land vehicle in a neural network. Adv Neural Inf Process Syst 1989: 305–313

[26]

Waldron KJ, McGhee RB. The mechanics of mobile robots. Robotics 1986; 2(2): 113–121

[27]

Payne SR, Ford TF, Wickham JEA. Endoscopic management of upper urinary tract stones. Br J Surg 1985; 72(10): 822–824

[28]

Hurteau R, DeSantis S, Begin E, Gagner M. Laparoscopic surgery assisted by a robotic cameraman: concept and experimental results. Proc IEEE Int Conf Robot Autom 1997: 2286–2289

[29]

Munro MG. Automated laparoscope positioner: preliminary experience. J Am Assoc Gynecol Laparosc 1993; 1(1): 67–70

[30]

Taylor R. Funda J, LaRose D, Trea M. A telerobotic system for augmentation of endoscopic surgery. IEEE Engineering in Medicine and Biology Society 1992: 1054–1056

[31]

Taylor R, Cutting C, Kim Y, Kalvin A, Larose D, Haddad B, Khoramabadi D, Noz M, Olyha R, Bruun N, Grimm D. A model-based optimal planning and execution system with active sensing and passive manipulation for augmentation of human precision in computer-integrated surgery. Int Symp on Experimental Robotics 1991

[32]

Tewari A, Peabody J, Sarle R, Balakrishnan G, Hemal A, Shrivastava A, Menon M. Technique of da Vinci robot-assisted anatomic radical prostatectomy. Urology 2002; 60(4): 569–572

[33]

Masatoshi E, Seiji N. Robotic surgery assisted by the ZEUS system. Recent Advances in Endourology Endourooncology 2005: 39–48

[34]

Forlizzi J, DiSalvo C. Service robots in the domestic environment: a study of the Roomba vacuum in the home. Proc 1st ACM SIGCHI/SIGART Conf on Human-Robot Interaction 2006: 258–265

[35]

Lee CW, Kim SG, Na SS. The effects of hippotherapy and a horse riding simulator on the balance of children with cerebral palsy. J Phys Ther Sci 2014; 26(3): 423–425

[36]

Seo DJ, Jun SW, Kim YO, Ko NY. Motion analysis for control of a 2-DOF horse riding robot. J Korea Robot Soc 2011; 6(3): 263–273

[37]

Hirabayashi T, Akizono J, Yamamoto T, Sakai H, Yano H. Teleoperation of construction machines with haptic information for underwater applications. Autom Construct 2006; 15(5): 563–570

[38]

Raibert M, Blankespoor K, Nelson G, Playter R. BigDog, the rough-terrain quadruped robot. IFAC Proc 2008; 41(2): 10822–108525

[39]

Becker-Asano C, Ogawa K, Nishio S, Ishiguro H. Exploring the uncanny valley with Geminoid HI-1 in a real-world application. IADIS Int Conf Interfaces and Human Computer Interaction 2010: 121–128

[40]

Mack MJ. Minimally invasive and robotic surgery. JAMA 2001; 285(5): 568–572

[41]

Hu D, Gong Y, Hannaford B, Seibel EJ. Semi-autonomous simulated brain tumor ablation with RAVENII surgical robot using behavior tree. IEEE Int Conf Robot Autom 2015; 2015: 3868–3875

[42]

Remacle M, M N Prasad V, Lawson G, Plisson L, Bachy V, Van der Vorst S. Transoral robotic surgery (TORS) with the Medrobotics Flex™ System: first surgical application on humans. Eur Arch Otorhinolaryngol 2015; 272(6): 1451–1455

[43]

Havlena M, Maninis KK, Bouget D, Poorten EV, Gool LV. 3D reconstruction of the retinal surface for robot-assisted eye surgery. Computer Assisted Radiology and Surgery 2016: 112–113

[44]

Berthet-Rayne P, Leibrandt K, Gras G, Fraisse P, Yang GZ. Inverse kinematics control methods for redundant snakelike robot teleoperation during minimally invasive surgery. IEEE Robot Autom Lett 2018; 3(3): 2501–2508

[45]

Haidegger T. Autonomy for surgical robots: concepts and paradigms. IEEE Trans Med Robot Bionics 2019; 1(2): 65–76

[46]

Butner S, Ghodoussi M. Transforming a surgical robot for human telesurgery. IEEE Trans Robot Autom 2003; 19(5): 818–824

[47]

Wang SX, Ding JN, Yun JT, Li QZ, Han BP. A robotic system with force feedback for micro-surgery. IEEE Int Conf Robot Autom 2005: 200–205

[48]

Dalvand MM, Nahavandi S, Fielding F, Mullins J, Najdovski Z, Howe R. Modular instrument for a haptically-enabled robotic surgical system (HeroSurg). IEEE Access 2018; 6:2169–3536

[49]

Vitiello V, Lee SL, Cundy TP, Yang GZ. Emerging robotic platforms for minimally invasive surgery. IEEE Rev Biomed Eng 2013; 6: 111–126

[50]

Philip W, Simon S, Samuel K. Transcervical minimally invasive esophagectomy using da Vinci® SPTM Surgical System: a feasibility study in cadaveric model. Surg Endosc 2019; 33: 1683–1686

[51]

Shin WH, Kwon DS. Surgical robot system for single-port surgery with novel joint mechanism. IEEE Trans Biomed Eng 2013; 60(4): 937–944

[52]

Kaouk JH, Goel RK, Haber GP, Crouzet S, Stein RJ. Robotic single-port transumbilical surgery in humans: initial report. BJU Int 2009; 103(3): 366–369

[53]

Liu QQ, Kobayashi Y, Zhang B, Ye J, Inko ECao Y, Sekiguchi Y, Cao Q, Hashizume M, Fujie MG. Design of an Insertable Surgical Robot with multi-level endoscopic control for Single Port Access Surgery. 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO). Shenzhen. 2013: 750–755

[54]

Sekiguchi Y, Kobayashi Y, Watanabe H, Tomono Y, Noguchi T, Takahashi Y, Toyoda K,Uemura M, Ieiri S, Ohdaira T, Tomikawa M, Hashizume M, Fujie MG. In vivo experiments of a surgical robot with vision field control for single port endoscopic surgery. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, MA. 2011: 7045–7048

[55]

Sekiguchi Y, Kobayashi Y, Tomono Y, Watanabe H, Toyada K, Konishi K, Tomikawa M, Ieiri S, Tanoue K, Hashizume M, Fujie MG. Development of a tool manipulator driven by a flexible shaft for single port endoscopic surgery. Int Conf Biomed Robotics and Biomechatronics, 2010: 120–125

[56]

Won Lee J, Arkoncel FR, Rha KH, Choi KH, Yu HS, Chae Y, Han WK. Urologic robot-assisted laparoendoscopic single-site surgery using a homemade single-port device: a single-center experience of 68 cases. J Endourol 2011; 25(9): 1481–1485

[57]

Han WK, Kim DS, Jeon HG, Jeong W, Oh CK, Choi KH, Lorenzo EI, Rha KH. Robot-assisted laparoendoscopic single-site surgery: partial nephrectomy for renal malignancy. Urology 2011; 77(3): 612–616

[58]

Piccigallo M, Scarfogliero U, Quaglia C, Petroni G, Valdastri P, Menciassi A, Dario P. Design of a novel bimanual robotic system for single-port laparoscopy. IEEE/ASME Trans Mech 2010; 15(6): 871–878

[59]

Xu K, Goldman RE, Ding J, Allen PK, Fowler DL, Simaan N. System design of an insertable robotic effector platform for single port access (SPA) surgery. IEEE/RSJ Int Conf Intelligent Robots and Systems 2009: 5546–5552

[60]

Botezatu I, Marinescu R, Laptoiu D. Minimally invasive-percutaneous surgery—recent developments of the foot surgery techniques. J Med Life 2015; 8(Spec Issue): 87–93

[61]

Kobayashi Y, Hamano R, Watanabe H, Koike T, Hong J, Toyoda K, Uemura M, Ieiri S, Tomikawa M, Ohdaira T, Hashizume M, Fujie MG. Preliminary in vivo evaluation of a needle insertion manipulator for central venous catheterization. Robomech J 2014; 1(18): 1–7

[62]

Hungr N, Troccaz J, Zemiti N, Tripodi N. Design of an ultrasound-guided robotic brachytherapy needle-insertion system. Proc 31st Ann Int Conf IEEE Eng Med Biol Soc 2009: 250–253

[63]

Simone C, Okamura AM. Modeling of needle insertion forces for robot-assisted percutaneous therapy. Proc Int Conf Robotics and Automation 2002: 2085–2091

[64]

Lumsden AB, Anaya-Ayala JE, Birnbaum I, Davies MG, Bismuth J, Cheema ZF, El Sayed HF, Seethamraju H, Loebe M, Valderrabano M. Robot-assisted stenting of a high-grade anastomotic pulmonary artery stenosis following single lung transplantation. J Endovasc Ther 2010; 17(5): 612–616

[65]

Yang Y, Tan UX, McMillan A, Gullapalli R, Desai JP. Design and implementation of a pneumatically-actuated robot for breast biopsy under continuous MRI. Proc IEEE Int Conf Robot Autom 2011: 674–679

[66]

Taillant E, Avila-Vilchis J, Allegrini C, Bricault I, Cinquin P. CT and MR compatible light puncture robot: architectural design and first experiments. Proc Mid Image Comput Comput-Assisted Interv 2004; 3217: 145–152

[67]

Abolhassani N, Patel R, Moallem M. Needle insertion into soft tissue: a survey. Med Eng Phys 2007; 29(4): 413–431

[68]

Zemiti N, Bricault I, Fouard C, Sanchez B, Cinquin P.LPR: a CT and MR-compatible puncture robot to enhance accuracy and safety of image-guided interventions. IEEE/ASME Trans Mech 2008; 13(3): 306–315

[69]

Masamune K, Fichtinger G, Patriciu A, Susil RC, Taylor RH, Kavoussi LR, Anderson JH, Sakuma I, Dohi T, Stoianovici D. System for robotically assisted percutaneous procedures with computed tomography guidance. Comput Aided Surg 2001; 6(6): 370–383

[70]

Tsekos NV, Khanicheh A, Christoforou E, Mavroidis C. Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu Rev Biomed Eng 2007; 9(1): 351–387

[71]

Kaiser WA, Fischer H, Vagner J, Selig M. Robotic system for biopsy and therapy of breast lesions in a high-field whole-body magnetic resonance tomography unit. Invest Radiol 2000; 35(8): 513–519

[72]

Masamune K, Kobayashi E, Masutani Y, Suzuki M, Dohi T, Iseki H, Takakura K. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J Image Guid Surg 1995; 1(4): 242–248

[73]

Jiang G, Luo M, Bai K, Chen S. A precise positioning method for a puncture robot based on a PSO-optimized BP neural network algorithm. Appl Sci (Basel) 2017; 7(10): 969

[74]

Chen Y, Godage IS, Sengupta S, Liu CL, Weaver KD, Barth EJ, Webster RJ. An MRI-compatible robot for intracerebral hemorrhage removal. Proc Design of Medical Devices Conf 2017: 1–2

[75]

Willekens K, Gijbels A, Schoevaerdts L, Esteveny L, Janssens T, Jonckx B, Feyen JH, Meers C, Reynaerts D, Vander Poorten E, Stalmans P. Robot-assisted retinal vein cannulation in an invivo porcine retinal vein occlusion model. Acta Ophthalmol 2017; 95(3): 270–275

[76]

Shahriari N, Heerink W, van Katwijk T, Hekman E, Oudkerk M, Misra S. Computed tomography (CT)-compatible remote center of motion needle steering robot: fusing CT images and electromagnetic sensor data. Med Eng Phys 2017; 45: 71–77

[77]

Yang C, Xie Y, Liu S, Sun D. Force modeling, identification, and feedback control of robot-assisted needle insertion: a survey of the literature. Sensors (Basel) 2018; 18(2): 561

[78]

Kaalep A, Sera T, Oyen W, Krause BJ, Chiti A, Liu Y, Boellaard R. EANM/EARL FDG-PET/CT accreditation—summary results from the first 200 accredited imaging systems. Eur J Nucl Med Mol Imaging 2018; 45(3): 412–422

[79]

Ben-David E, Shochat M, Roth I, Nissenbaum I, Sosna J, Goldberg SN. Evaluation of a CT-guided robotic system for precise percutaneous needle insertion. J Vasc Interv Radiol 2018; 29(10): 1440–1446

[80]

Moreira P, van de Steeg G, Krabben T, Zandman J, Heckman EEG, van der Heijden F, Borra R, Misra S. The MIRIAM robot: a novel robotic system for MR-guided needle insertion in the prostate. J Med Robot Res 2017; 2(4): 1750006

[81]

Kim D, Kobayashi E, Dohi T, Sakuma I. A new, compact MR-compatible surgical manipulator for minimally invasive liver surgery. Proc Med Image Comput Comput-Assisted Intervention 2002; 2488: 164–169

[82]

Moser R, Gassert R, Burdet E, Sache L, Woodtli HR, Erni J, Maeder W, Bleuler H. An MR-compatible robot technology. Proc IEEE Int Conf Robotics Automation 2003: 670–75

[83]

Koseki Y, Kikinis R, Jolesz F, Chinzei K. Precise evaluation of positioning repeatability of MR-compatible manipulator inside MRI. Proc Med Image Comput Comput-Assisted Intervention 2004: 192–99

[84]

Takahashi N, Tada M, Ueda J, Matsumoto Y, Ogasawara T. An optical 6-axis force sensor for brain function analysis using fMRI. Proc IEEE Int Conf Sensors 2003: 253–58

[85]

Kataoka H, Washio T, Audette M, Mizuhara K. A model for relations between needle deflection, force, and thickness on needle penetration. Proc Med Image Comput Comput Assist Interv 2001: 966–74

[86]

Kataoka H, Washio T, Chinzei K, Mizuhara K, Simone C, Okamura AM. Measurement of the tip and friction force acting on a needle during penetration. Proc Med Image Comput Comput Assist Interv 2002: 216–23

[87]

Abolhassani N, Patel R, Moallem M. Trajectory generation for robotic needle insertion in soft issue. IEEE Int Conf of the EMBS 2004: 2730–2733

[88]

Seifabadi R, Iordachita I, Fichtinger G. Design of a teleoperated needle steering system for MRI-guided prostate interventions. Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron 2012: 793–798

[89]

Webster RJ, Memisevic J, Okamura AM. Design considerations for robotic needle steering. IEEE Int Conf Robot Autom 2005: 3599–3605

[90]

Kobayashi Y, Okamoto J, Fujie MG. Position control of needle tip based on physical properties of liver and force sensor. J Robot Mechatron 2006; 18(2): 167–176

[91]

Watanabe H, Kobayashi Y, Hoshi T, Kawamura K, Fujie MG, Hashizume M. Integrated system for RFA therapy with biomechanical simulation and needle insertion robot. 2009 IEEE/SICE International Symposium on System Integration (SII). Tokyo. 2009: 54–59

[92]

Kobayashi Y, Kato A, Watanabe H, Hoshi T, Kawamura K, Fujie MG. Modeling of viscoelastic and nonlinear material properties of liver tissue using fractional calculations. J Biomech Sci Eng 2012; 7(2): 177–187

[93]

Kobayashi Y, Suzuki M, Kato A, Hatano M, Konishi K, Hashizume M, Fujie MG. Enhanced targeting in breast tissue using a robotic tissue preloading-based needle insertion system. IEEE Trans Robot 2012; 28(3): 710–722

[94]

Kobayashi Y, Hong J, Hamano R, Okada K, Fujie MG, Hashizume M. Development of a needle insertion manipulator for central venous catheterization. Int J Med Robot 2012; 8(1): 34–44

[95]

Ten Tusscher KH, Noble D, Noble PJ, Panfilov AV. A model for human ventricular tissue. Am J Physiol Heart Circ Physiol 2004; 286(4): H1573–H1589

[96]

O’Hara T, Virág L, Varró A, Rudy Y. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLOS Comput Biol 2011; 7(5): e1002061

[97]

O’Leary MD, Simone C, Washio T, Yoshinaka K, Okamura AM. Robotic needle insertion: effect of friction and needle geometry. Proc IEEE Int Conf Robot Autom 2003: 1774–1779

[98]

Schneider CM, Okamura A, Fichtinger G. A robotic system for transrectal needle insertion into prostate with integrated ultrasound. Proc IEEE Int Conf Robot Autom 2004: 365–370

[99]

DiMaio SP, Salcudean SE. Needle insertion modeling and simulation. IEEE Trans Robot Autom 2003; 19(5): 864–875

[100]

Ebrahimi R, Okazawa S, Rohling R, Salcudean EE. Hand-held steerable needle device. MICCAI 2003; 2879: 223–229

[101]

Hiemenz L, Lisky A, Schmalbrock P. Puncture mechanics for the insertion of an epidural needle. 21st Annual Meeting of the American Society of Biomechanics 1997

[102]

Abdalla EK, Vauthey JN, Ellis LM, Ellis V, Pollock R, Broglio KR, Hess K, Curley SA. Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg 2004; 239(6): 818–827

[103]

Tsukune M, Kobayashi Y, Miyashita T, Fujie MG. Breast tumor phantom utilizing heat coagulation to mimic nonlinear elasticity. 27th Int Congr and Exhib on Computer Assisted Radiology and Surgery 2013: PO12–00050

[104]

Yuen SG, Novotny PM, Howe RD. Quasiperiodic predictive filtering for robot-assisted beating heart surgery. IEEE Int Conf Robot Autom 2008: 3875–3880

[105]

Aaronson OS, Tulipan NB, Cywes R, Sundell HW. Robot-assisted endoscopic intrauterine myelomeningocele repair: a feasibility study. Pediatr Neurosurg 2002; 36(2): 85–89

[106]

Hoshi T, Kobayashi Y, Kawamura K, Fujie MG. Developing an intraoperative methodology using the finite element method and the extended Kalman filter to identify the material parameters of an organ model. Proc 29th Annual Int Conf of IEEE Eng in Med Biol Soc 2007: 469–474

[107]

Lu H, Yang Y, Lin X, Shi P, Shen Y. Low-invasive cell injection based on rotational microrobot. J Advanced Biosystems 2019: 1800274

[108]

Lu H, Zhang M, Yang Y, Huang Q, Fukuda T, Wang Z, Shen Y. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat Commun 2018; 9(1): 3944

[109]

Miriyev A, Stack K, Lipson H. Soft material for soft actuators. Nat Commun 2017; 8(1): 596

[110]

Bartlett NW, Tolley MT, Overvelde JTB, Weaver JC, Mosadegh B, Bertoldi K, Whitesides GM, Wood RJ. SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion. Science 2015; 349(6244): 161–165

RIGHTS & PERMISSIONS

The Author(s) 2020. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (2823KB)

2987

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/