Hybrid polymer biomaterials for bone tissue regeneration

Bo Lei , Baolin Guo , Kunal J. Rambhia , Peter X. Ma

Front. Med. ›› 2019, Vol. 13 ›› Issue (2) : 189 -201.

PDF (2591KB)
Front. Med. ›› 2019, Vol. 13 ›› Issue (2) : 189 -201. DOI: 10.1007/s11684-018-0664-6
REVIEW
REVIEW

Hybrid polymer biomaterials for bone tissue regeneration

Author information +
History +
PDF (2591KB)

Abstract

Native tissues possess unparalleled physiochemical and biological functions, which can be attributed to their hybrid polymer composition and intrinsic bioactivity. However, there are also various concerns or limitations over the use of natural materials derived from animals or cadavers, including the potential immunogenicity, pathogen transmission, batch to batch consistence and mismatch in properties for various applications. Therefore, there is an increasing interest in developing degradable hybrid polymer biomaterials with controlled properties for highly efficient biomedical applications. There have been efforts to mimic the extracellular protein structure such as nanofibrous and composite scaffolds, to functionalize scaffold surface for improved cellular interaction, to incorporate controlled biomolecule release capacity to impart biological signaling, and to vary physical properties of scaffolds to regulate cellular behavior. In this review, we highlight the design and synthesis of degradable hybrid polymer biomaterials and focus on recent developments in osteoconductive, elastomeric, photoluminescent and electroactive hybrid polymers. The review further exemplifies their applications for bone tissue regeneration.

Keywords

hybrid polymer / bone regeneration / tissue engineering / biomaterials

Cite this article

Download citation ▾
Bo Lei, Baolin Guo, Kunal J. Rambhia, Peter X. Ma. Hybrid polymer biomaterials for bone tissue regeneration. Front. Med., 2019, 13(2): 189-201 DOI:10.1007/s11684-018-0664-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Watt FM, Huck WTS. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 2013; 14(8): 467–473

[2]

Erickson IE, Kestle SR, Zellars KH, Farrell MJ, Kim M, Burdick JA, Mauck RL. High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. Acta Biomater 2012; 8(8): 3027–3034

[3]

Lee SS, Huang BJ, Kaltz SR, Sur S, Newcomb CJ, Stock SR, Shah RN, Stupp SI. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials 2013; 34(2): 452–459

[4]

Dorozhkin SV. Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. J Funct Biomater 2015; 6(3): 708–832

[5]

Wu W, Wang WG, Li JS. Star polymers: advances in biomedical applications. Prog Polym Sci 2015; 46: 55–85

[6]

Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 2013; 42(3): 1147–1235

[7]

Tian HY, Tang ZH, Zhuang XL, Chen XS, Jing XB. Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 2012; 37(2): 237–280

[8]

Pan Z, Ding J. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2012; 2(3): 366–377

[9]

Igwe JC, Mikael PE, Nukavarapu SP. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering. J Tissue Eng Regen Med 2014; 8(2): 131–142

[10]

Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK. Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 2015; 72: 269–281

[11]

Venkatesan J, Vinodhini PA, Sudha PN, Kim SK. Chitin and chitosan composites for bone tissue regeneration. Adv Food Nutr Res 2014;73: 59–81 PMID: 25300543

[12]

Yunus Basha R, Sampath Kumar TS, Doble M. Design of biocomposite materials for bone tissue regeneration. Mater Sci Eng C 2015; 57: 452–463

[13]

Sun F, Zhou H, Lee J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater 2011; 7(11): 3813–3828

[14]

Gkioni K, Leeuwenburgh SCG, Douglas TEL, Mikos AG, Jansen JA. Mineralization of hydrogels for bone regeneration. Tissue Eng Part B Rev 2010; 16(6): 577–585

[15]

Wei Q, Lu J, Wang Q, Fan H, Zhang X. Novel synthesis strategy for composite hydrogel of collagen/hydroxyapatite-microsphere originating from conversion of CaCO3 templates. Nanotechnology 2015; 26(11): 115605

[16]

Vo TN, Shah SR, Lu S, Tatara AM, Lee EJ, Roh TT, Tabata Y, Mikos AG. Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Biomaterials 2016; 83: 1–11

[17]

Nejadnik MR, Mikos AG, Jansen JA, Leeuwenburgh SCG. Facilitating the mineralization of oligo(poly(ethylene glycol) fumarate) hydrogel by incorporation of hydroxyapatite nanoparticles. J Biomed Mater Res A 2012; 100(5): 1316–1323

[18]

Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater 2013; 9(9): 8037–8045

[19]

Wei G, Jin Q, Giannobile WV, Ma PX. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 2007; 28(12): 2087–2096

[20]

Zhang R, Ma PX. Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res 1999; 44(4): 446–455

[21]

Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review. Prog Polym Sci 2013; 38(8): 1232–1261

[22]

Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 2015; 27(7): 1143–1169

[23]

Sahoo NG, Pan YZ, Li L, He CB. Nanocomposites for bone tissue regeneration. Nanomedicine (Lond) 2013; 8(4): 639–653

[24]

Ma PX, Zhang R, Xiao G, Franceschi R. Engineering new bone tissue in vitro on highly porous poly(α-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res 2001; 54(2): 284–293

[25]

Shinzato S, Nakamura T, Ando K, Kokubo T, Kitamura Y. Mechanical properties and osteoconductivity of new bioactive composites consisting of partially crystallized glass beads and poly(methyl methacrylate). J Biomed Mater Res 2002; 60(4): 556–563

[26]

Koleganova VA, Bernier SM, Dixon SJ, Rizkalla AS. Bioactive glass/polymer composite materials with mechanical properties matching those of cortical bone. J Biomed Mater Res A 2006; 77(3): 572–579

[27]

Marcolongo M, Ducheyne P, Garino J, Schepers E. Bioactive glass fiber/polymeric composites bond to bone tissue. J Biomed Mater Res 1998; 39(1): 161–170

[28]

Kerativitayanan P, Gaharwar AK. Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates. Acta Biomater 2015; 26: 34–44

[29]

Zhao X, Wu Y, Du Y, Chen X, Lei B, Xue Y, Ma PX. A highly bioactive and biodegradable poly(glycerol sebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. J Mater Chem B Mater Biol Med 2015; 3(16): 3222–3233

[30]

Du YZ, Yu M, Ge J, Ma PX, Chen XF, Lei B. Development of a multifunctional platform based on strong, intrinsically photoluminescent and antimicrobial silica-poly(citrates)-based hybrid biodegradable elastomers for bone regeneration. Adv Funct Mater 2015; 25(31): 5016–5029

[31]

Du YZ, Ge J, Shao YP, Ma PX, Chen XF, Lei B. Development of silica grafted poly(1,8-octanediol-co-citrates) hybrid elastomers with highly tunable mechanical properties and biocompatibility. J Mater Chem B Mater Biol Med 2015; 3(15): 2986–3000

[32]

Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 2014; 10(6): 2341–2353

[33]

Hopley EL, Salmasi S, Kalaskar DM, Seifalian AM. Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Biotechnol Adv 2014; 32(5): 1000–1014

[34]

Liu X, Holzwarth JM, Ma PX. Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromol Biosci 2012; 12(7): 911–919

[35]

Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013; 9(1): 4457–4486

[36]

Lei B, Chen XF, Wang YJ, Zhao N. Synthesis and in vitro bioactivity of novel mesoporous hollow bioactive glass microspheres. Mater Lett 2009; 63(20): 1719–1721

[37]

Lei B, Chen X, Wang Y, Zhao N, Du C, Fang L. Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation. J Biomed Mater Res A 2010; 94(4): 1091–1099

[38]

Chen XF, Lei B, Wang YJ, Zhao N. Morphological control and in vitro bioactivity of nanoscale bioactive glasses. J Non-Cryst Solids 2009; 355(13): 791–796

[39]

Zakaria SM, Sharif Zein SH, Othman MR, Yang F, Jansen JA. Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review. Tissue Eng Part B Rev 2013; 19(5): 431–441

[40]

Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong ZK, Mano JF. Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 2010; 70(13): 1764–1776

[41]

Lei B, Shin KH, Noh DY, Koh YH, Choi WY, Kim HE. Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly(e-caprolactone) polymer for bone tissue regeneration. J Biomed Mater Res Part B Appl Biomater 2012; 100B (4): 967–975

[42]

Lei B, Chen XF, Han X, Zhou JA. Versatile fabrication of nanoscale sol-gel bioactive glass particles for efficient bone tissue regeneration. J Mater Chem 2012; 22(33): 16906–16913

[43]

Lei B, Shin KH, Noh DY, Jo IH, Koh YH, Kim HE, Kim SE. Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering. Mater Sci Eng C 2013; 33(3): 1102–1108

[44]

Roohani-Esfahani SI, Nouri-Khorasani S, Lu Z, Appleyard R, Zreiqat H. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Biomaterials 2010; 31(21): 5498–5509

[45]

Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomater 2011; 7(6): 2355–2373

[46]

Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R. Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 2010; 158(2): 353–361

[47]

Mozafari M, Moztarzadeh F, Rabiee M, Azami M, Maleknia S, Tahriri M, Moztarzadeh Z, Nezafati N. Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram Int 2010; 36(8): 2431–2439

[48]

Hong Z, Reis RL, Mano JF. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomater 2008; 4(5): 1297–1306

[49]

Liu X, Smith LA, Hu J, Ma PX. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 2009; 30(12): 2252–2258

[50]

He C, Xiao G, Jin X, Sun C, Ma PX. Electrodeposition on nanofibrous polymer scaffolds: rapid mineralization, tunable calcium phosphate composition and topography. Adv Funct Mater 2010; 20(20): 3568–3576

[51]

Lei B, Wang L, Chen XF, Chae SK. Biomimetic and molecular level-based silicate bioactive glass-gelatin hybrid implants for loading-bearing bone fixation and repair. J Mater Chem B Mater Biol Med 2013; 1(38): 5153–5162

[52]

Chen J, Que W, Xing Y, Lei B. Molecular level-based bioactive glass-poly (caprolactone) hybrids monoliths with porous structure for bone tissue repair. Ceram Int 2015; 41(2): 3330–3334

[53]

Xie M, Ge J, Lei B, Zhang Q, Chen X, Ma PX. Star-shaped, biodegradable, and elastomeric PLLA-PEG-POSS hybrid membrane with biomineralization activity for guiding bone tissue regeneration. Macromol Biosci 2015; 15(12): 1656–1662

[54]

Chen J, Du Y, Que W, Xing Y, Chen X, Lei B. Crack-free polydimethylsiloxane-bioactive glass-poly(ethylene glycol) hybrid monoliths with controlled biomineralization activity and mechanical property for bone tissue regeneration. Colloids Surf B Biointerfaces 2015; 136: 126–133

[55]

Chen J, Du YZ, Que WX, Xing YL, Lei B. Content-dependent biomineralization activity and mechanical properties based on polydimethylsiloxane-bioactive glass-poly(caprolactone) hybrids monoliths for bone tissue regeneration. Rsc Adv. 2015; 5(75): 61309–61317

[56]

Lei B, Shin KH, Moon YW, Noh DY, Koh YH, Jin Y, Kim HE. Synthesis and bioactivity of sol-gel derived porous, bioactive glass microspheres using chitosan as novel biomolecular template. J Am Ceram Soc 2012; 95(1): 30–33

[57]

Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L, Hanly R, Smith ME, Stevens MM, Jones JR. Silica-gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Adv Funct Mater 2010; 20(22): 3835–3845

[58]

Lei B, Shin KH, Jo IH, Koh YH, Kim HE. Highly porous gelatin-silica hybrid scaffolds with textured surfaces using new direct foaming/freezing technique. Mater Chem Phys 2014; 145(3): 397–402

[59]

Lei B, Shin KH, Noh DY, Jo IH, Koh YH, Choi WY, Kim HE. Nanofibrous gelatin-silica hybrid scaffolds mimicking the native extracellular matrix (ECM) using thermally induced phase separation. J Mater Chem 2012; 22(28): 14133–14140

[60]

Xue YM, Wang L, Shao YP, Yan J, Chen XF, Lei B. Facile and green fabrication of biomimetic gelatin-siloxane hybrid hydrogel with highly elastic properties for biomedical applications. Chem Eng J 2014; 251: 158–164

[61]

Duan S, Yang X, Mei F, Tang Y, Li X, Shi Y, Mao J, Zhang H, Cai Q. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials. J Biomed Mater Res A 2015; 103(4): 1424–1435

[62]

Sitharaman B, Shi X, Walboomers XF, Liao H, Cuijpers V, Wilson LJ, Mikos AG, Jansen JA. In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 2008; 43(2): 362–370

[63]

Park S, Park J, Jo I, Cho SP, Sung D, Ryu S, Park M, Min KA, Kim J, Hong S, Hong BH, Kim BS. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Biomaterials 2015; 58: 93–102

[64]

Siqueira IAWB, Corat MAF, Cavalcanti B, Ribeiro Neto WA, Martin AA, Bretas RE, Marciano FR, Lobo AO. In vitro and in vivo studies of novel poly(D,L-lactic acid), superhydrophilic carbon nanotubes, and nanohydroxyapatite scaffolds for bone regeneration. ACS Appl Mater Interfaces 2015; 7(18): 9385–9398

[65]

Mikael PE, Amini AR, Basu J, Josefina Arellano-Jimenez M, Laurencin CT, Sanders MM, Barry Carter C, Nukavarapu SP. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation. Biomed Mater 2014; 9(3): 035001

[66]

Hirata E, Ménard-Moyon C, Venturelli E, Takita H, Watari F, Bianco A, Yokoyama A. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation. Nanotechnology 2013; 24(43): 435101

[67]

Das B, Chattopadhyay P, Maji S, Upadhyay A, Das Purkayastha M, Mohanta CL, Maity TK, Karak N. Bio-functionalized MWCNT/hyperbranched polyurethane bionanocomposite for bone regeneration. Biomed Mater 2015; 10(2): 025011

[68]

Lei B, Shin KH, Koh YH, Kim HE. Porous gelatin-siloxane hybrid scaffolds with biomimetic structure and properties for bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2014; 102(7): 1528–1536

[69]

Nettles DL, Chilkoti A, Setton LA. Applications of elastin-like polypeptides in tissue engineering. Adv Drug Deliv Rev 2010; 62(15): 1479–1485

[70]

Chen QZ, Liang SL, Thouas GA. Elastomeric biomaterials for tissue engineering. Prog Polym Sci 2013; 38(3-4): 584–671

[71]

Sant S, Hwang CM, Lee SH, Khademhosseini A. Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. J Tissue Eng Regen Med 2011; 5(4): 283–291

[72]

Kharaziha M, Nikkhah M, Shin SR, Annabi N, Masoumi N, Gaharwar AK, Camci-Unal G, Khademhosseini A. PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials 2013; 34(27): 6355–6366

[73]

Bokobza L. Mechanical, electrical and spectroscopic investigations of carbon nanotube-reinforced elastomers. Vib Spectrosc 2009; 51(1): 52–59

[74]

Pei AH, Malho JM, Ruokolainen J, Zhou Q, Berglund LA. Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 2011; 44(11): 4422–4427

[75]

Paul DR, Mark JE. Fillers for polysiloxane (“silicone”) elastomers. Prog Polym Sci 2010; 35(7): 893–901

[76]

Moradi A, Dalilottojari A, Pingguan-Murphy B, Djordjevic I. Fabrication and characterization of elastomeric scaffolds comprised of a citric acid-based polyester/hydroxyapatite microcomposite. Mater Des 2013; 50: 446–450

[77]

Liang SL, Cook WD, Thouas GA, Chen QZ. The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites. Biomaterials 2010; 31(33): 8516–8529

[78]

Du Y, Yu M, Chen X, Ma PX, Lei B. Development of biodegradable poly(citrate)-polyhedral oligomeric silsesquioxanes hybrid elastomers with high mechanical properties and osteogenic differentiation activity. ACS Appl Mater Interfaces 2016; 8(5): 3079–3091

[79]

Du Y, Xue Y, Ma PX, Chen X, Lei B. Biodegradable, elastomeric, and intrinsically photoluminescent poly(silicon-citrates) with high photostability and biocompatibility for tissue regeneration and bioimaging. Adv Healthc Mater 2016; 5(3): 382–392

[80]

Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci 2007; 32(8-9): 876–921

[81]

Patil AO, Heeger AJ, Wudl F. Optical-properties of conducting polymers. Chem Rev 1988; 88(1): 183–200

[82]

Guo BL, Glavas L, Albertsson AC. Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci 2013; 38(9): 1263–1286

[83]

Xie M, Wang L, Ge J, Guo B, Ma PX. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering. ACS Appl Mater Interfaces 2015; 7(12): 6772–6781

[84]

Xie M, Wang L, Guo B, Wang Z, Chen YE, Ma PX. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation. Biomaterials 2015; 71: 158–167

[85]

Hardy JG, Geissler SA, Aguilar D Jr, Villancio-Wolter MK, Mouser DJ, Sukhavasi RC, Cornelison RC, Tien LW, Preda RC, Hayden RS, Chow JK, Nguy L, Kaplan DL, Schmidt CE. Instructive conductive 3D silk foam-based bone tissue scaffolds enable electrical stimulation of stem cells for enhanced osteogenic differentiation. Macromol Biosci 2015; 15(11): 1490–1496

[86]

Meng S, Zhang Z, Rouabhia M. Accelerated osteoblast mineralization on a conductive substrate by multiple electrical stimulation. J Bone Miner Metab 2011; 29(5): 535–544

[87]

Meng S, Rouabhia M, Zhang Z. Electrical stimulation modulates osteoblast proliferation and bone protein production through heparin-bioactivated conductive scaffolds. Bioelectromagnetics 2013; 34(3): 189–199

[88]

Yazdimamaghani M, Razavi M, Mozafari M, Vashaee D, Kotturi H, Tayebi L. Biomineralization and biocompatibility studies of bone conductive scaffolds containing poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate) (PEDOT:PSS). J Mater Sci Mater Med 2015; 26(12):274

[89]

Pelto J, Björninen M, Pälli A, Talvitie E, Hyttinen J, Mannerström B, Suuronen Seppanen R, Kellomäki M, Miettinen S, Haimi S. Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation. Tissue Eng Part A 2013; 19(7-8): 882–892

[90]

Guo B, Lei B, Li P, Ma PX. Functionalized scaffolds to enhance tissue regeneration. Regen Biomater 2015; 2(1): 47–57

[91]

Jiang T, Carbone EJ, Lo KWH, Laurencin CT. Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 2015; 46: 1–24

[92]

Schneider OD, Weber F, Brunner TJ, Loher S, Ehrbar M, Schmidlin PR, Stark WJ. In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects. Acta Biomater 2009; 5(5): 1775–1784

[93]

Lee EJ, Shin DS, Kim HE, Kim HW, Koh YH, Jang JH. Membrane of hybrid chitosan-silica xerogel for guided bone regeneration. Biomaterials 2009; 30(5): 743–750

[94]

Xie M, Ge J, Xue Y, Du Y, Lei B, Ma PX. Photo-crosslinked fabrication of novel biocompatible and elastomeric star-shaped inositol-based polymer with highly tunable mechanical behavior and degradation. J Mech Behav Biomed Mater 2015; 51: 163–168

[95]

Li LC, Yu M, Ma PX, Guo BL. Electroactive degradable copolymers enhancing osteogenic differentiation from bone marrow derived mesenchymal stem cells. J Mater Chem B Mater Biol Med 2016; 4(3): 471–481

RIGHTS & PERMISSIONS

The Author(s) 2018. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (2591KB)

3675

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/