Taking advantage of drug resistance, a new approach in the war on cancer

Liqin Wang , Rene Bernards

Front. Med. ›› 2018, Vol. 12 ›› Issue (4) : 490 -495.

PDF (224KB)
Front. Med. ›› 2018, Vol. 12 ›› Issue (4) : 490 -495. DOI: 10.1007/s11684-018-0647-7
COMMENTARY
COMMENTARY

Taking advantage of drug resistance, a new approach in the war on cancer

Author information +
History +
PDF (224KB)

Abstract

Identification of the driver mutations in cancer has resulted in the development of a new category of molecularly targeted anti-cancer drugs. However, as was the case with conventional chemotherapies, the effectiveness of these drugs is limited by the emergence of drug-resistant variants. While most cancer therapies are given in combinations that are designed to avoid drug resistance, we discuss here therapeutic approaches that take advantage of the changes in cancer cells that arise upon development of drug resistance. This approach is based on notion that drug resistance comes at a fitness cost to the cancer cell that can be exploited for therapeutic benefit. We discuss the development of sequential drug therapies in which the first therapy is not given with curative intent, but to induce a major new sensitivity that can be targeted with a second drug that selectively targets the acquired vulnerability. This concept of collateral sensitivity has hitherto not been used on a large scale in the clinic and holds great promise for future cancer therapy.

Keywords

cancer / drug resistance / genetic screens / senescence / targeted therapy

Cite this article

Download citation ▾
Liqin Wang, Rene Bernards. Taking advantage of drug resistance, a new approach in the war on cancer. Front. Med., 2018, 12(4): 490-495 DOI:10.1007/s11684-018-0647-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Weinstein IB. Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 2002; 297(5578): 63–64

[2]

Sun C, Bernards R. Feedback and redundancy in receptor tyrosine kinase signaling: relevance to cancer therapies. Trends Biochem Sci 2014; 39(10): 465–474

[3]

Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010; 363(9): 809–819

[4]

Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, Demidov LV, Hassel JC, Rutkowski P, Mohr P, Dummer R, Trefzer U, Larkin JM, Utikal J, Dreno B, Nyakas M, Middleton MR, Becker JC, Casey M, Sherman LJ, Wu FS, Ouellet D, Martin AM, Patel K, Schadendorf D; the METRIC Study Group. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 2012; 367(2): 107–114

[5]

Long GV, Fung C, Menzies AM, Pupo GM, Carlino MS, Hyman J, Shahheydari H, Tembe V, Thompson JF, Saw RP, Howle J, Hayward NK, Johansson P, Scolyer RA, Kefford RF, Rizos H. Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma. Nat Commun 2014; 5(1): 5694

[6]

Kopetz S, Desai J, Chan E, Hecht JR, O’Dwyer PJ, Maru D, Morris V, Janku F, Dasari A, Chung W, Issa JP, Gibbs P, James B, Powis G, Nolop KB, Bhattacharya S, Saltz L. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J Clin Oncol 2015; 33(34): 4032–4038

[7]

Beijersbergen RL, Wessels LFA, Bernards R. Synthetic lethality in cancer therapeutics. Annu Rev Cancer Biol 2017; 1(1): 141–161

[8]

Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A, Bernards R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 2012; 483(7387): 100–103

[9]

van Geel RMJM, Tabernero J, Elez E, Bendell JC, Spreafico A, Schuler M, Yoshino T, Delord JP, Yamada Y, Lolkema MP, Faris JE, Eskens FALM, Sharma S, Yaeger R, Lenz HJ, Wainberg ZA, Avsar E, Chatterjee A, Jaeger S, Tan E, Maharry K, Demuth T, Schellens JHM. A phase Ib dose-escalation study of encorafenib and cetuximab with or without alpelisib in metastatic BRAF-mutant colorectal cancer. Cancer Discov 2017; 7(6): 610–619

[10]

Hutchison DJ. Cross resistance and collateral sensitivity studies in cancer chemotherapy. In: Haddow A, Weinhouse S, editors. Advances in Cancer Research. 7: Academic Press; 1963. 235–350

[11]

Szakács G, Hall MD, Gottesman MM, Boumendjel A, Kachadourian R, Day BJ, Baubichon-Cortay H, Di Pietro A. Targeting the Achilles heel of multidrug-resistant cancer by exploiting the fitness cost of resistance. Chem Rev 2014; 114(11): 5753–5774

[12]

Imamovic L, Sommer MOA. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci Transl Med 2013; 5(204):204ra132

[13]

Seghers AC, Wilgenhof S, Lebbé C, Neyns B. Successful rechallenge in two patients with BRAF-V600-mutant melanoma who experienced previous progression during treatment with a selective BRAF inhibitor. Melanoma Res 2012; 22(6): 466–472

[14]

McMahon M. Intermittent dosing in melanoma. Clin Adv Hematol Oncol 2015; 13(6): 348–350 PMID:26352888

[15]

Treiber N, Huber MA, Schneider LA, Scharffetter-Kochanek K, Schultz E, Debus D. Intermittent vemurafenib therapy in malignant melanoma. J Dtsch Dermatol Ges 2017; 15(4): 451–454

[16]

Sun C, Wang L, Huang S, Heynen GJJE, Prahallad A, Robert C, Haanen J, Blank C, Wesseling J, Willems SM, Zecchin D, Hobor S, Bajpe PK, Lieftink C, Mateus C, Vagner S, Grernrum W, Hofland I, Schlicker A, Wessels LF, Beijersbergen RL, Bardelli A, Di Nicolantonio F, Eggermont AM, Bernards R. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 2014; 508(7494): 118–122

[17]

Das Thakur M, Salangsang F, Landman AS, Sellers WR, Pryer NK, Levesque MP, Dummer R, McMahon M, Stuart DD. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 2013; 494(7436): 251–255

[18]

Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol 2017; 14(8): 463–482

[19]

Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, Galeas J, Dhruv HD, Berens ME, Schreiber SL, McCormick F, McManus MT. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 2017; 551(7679): 247–250

[20]

Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, Viswanathan SR, Chattopadhyay S, Tamayo P, Yang WS, Rees MG, Chen S, Boskovic ZV, Javaid S, Huang C, Wu X, Tseng YY, Roider EM, Gao D, Cleary JM, Wolpin BM, Mesirov JP, Haber DA, Engelman JA, Boehm JS, Kotz JD, Hon CS, Chen Y, Hahn WC, Levesque MP, Doench JG, Berens ME, Shamji AF, Clemons PA, Stockwell BR, Schreiber SL. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 2017; 547(7664): 453–457

[21]

Zhao B, Sedlak JC, Srinivas R, Creixell P, Pritchard JR, Tidor B, Lauffenburger DA, Hemann MT. Exploiting temporal collateral sensitivity in tumor clonal evolution. Cell 2016; 165(1): 234–246

[22]

Wang L, Leite de Oliveira R, Huijberts S, Bosdriesz E, Pencheva N, Brunen D, Bosma A, Song JY, Zevenhoven J, Los-de Vries GT, Horlings H, Nuijen B, Beijnen JH, Schellens JHM, Bernards R. An acquired vulnerability of drug resistant melanoma with therapeutic potential. Cell 2018; 173(6): 1413–1425.e14

[23]

Wang L, Leite de Oliveira R, Wang C, Fernandes Neto JM, Mainardi S, Evers B, Lieftink C, Morris B, Jochems F, Willemsen L, Beijersbergen RL, Bernards R. High-throughput functional genetic and compound screens identify targets for senescence induction in cancer. Cell Reports 2017; 21(3): 773–783

[24]

Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 2014; 15(7): 482–496

[25]

Fridman AL, Tainsky MA. Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene 2008; 27(46): 5975–5987

[26]

Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003; 113(6): 703–716

[27]

Jiang P, Du W, Mancuso A, Wellen KE, Yang X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 2013; 493(7434): 689–693 PMID:23334421

[28]

Wiley CD, Campisi J. From ancient pathways to aging cells-connecting metabolism and cellular senescence. Cell Metab 2016; 23(6): 1013–1021

[29]

Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, Luo Y, Wang X, Aykin-Burns N, Krager K, Ponnappan U, Hauer-Jensen M, Meng A, Zhou D. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 2016; 22(1): 78–83

[30]

Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson KO, Giles CB, Wren JD, Niedernhofer LJ, Robbins PD, Kirkland JL. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 2016; 15(3): 428–435

RIGHTS & PERMISSIONS

The Author(s) 2018. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (224KB)

2466

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/