On non-abelian extensions of 3-Leibniz algebras

Nanyan XU , Yunhe SHENG

Front. Math. China ›› 2024, Vol. 19 ›› Issue (2) : 57 -74.

PDF (573KB)
Front. Math. China ›› 2024, Vol. 19 ›› Issue (2) : 57 -74. DOI: 10.3868/s140-DDD-024-0006-x
RESEARCH ARTICLE

On non-abelian extensions of 3-Leibniz algebras

Author information +
History +
PDF (573KB)

Abstract

In this paper, we study non-abelian extensions of 3-Leibniz algebras through Maurer-Cartan elements. We construct a differential graded Lie algebra and prove that there is a one-to-one correspondence between the isomorphism classes of non-abelian extensions in 3-Leibniz algebras and the equivalence classes of Maurer-Cartan elements in this differential graded Lie algebra. And also the Leibniz algebra structure on the space of fundamental elements of 3-Leibniz algebras is analyzed. It is proved that the non-abelian extension of 3-Leibniz algebras induce the non-abelian extensions of Leibniz algebras.

Keywords

3-Leibniz algebras / Leibniz algebra / non-abelian extension / Maurer-Cartan element

Cite this article

Download citation ▾
Nanyan XU, Yunhe SHENG. On non-abelian extensions of 3-Leibniz algebras. Front. Math. China, 2024, 19(2): 57-74 DOI:10.3868/s140-DDD-024-0006-x

登录浏览全文

4963

注册一个新账户 忘记密码

1 Introduction

In 1993, Loday and Pirashvili [18] introduced the non-skew-symmetric form of Lie algebra, namely the Leibniz algebra. As Leibniz algebra plays an important role in algebra, geometry, physics and other fields, such as Hochschild homology theory and Nambu mechanics, it has attracted the attention of numerous researchers, hence rapidly developing the theories. [15] studied the properties of restricted Leibniz algebras. In 1985, Filippov [13] first proposed the concept of n-Lie algebras (also known as Filippov algebras), and extensively studied its structure theory. Takhtajan [19, 23] found that n-Lie algebras were the corresponding algebraic structures of Nambu mechanics. 3-Lie algebras were closely related to many areas of mathematical physics (see [23]). As the non-skew-symmetric form of n-Lie algebra, n-Leibniz algebra was proposed by Casas et al. [11]. They also presented the construction between Leibniz algebra and n-Leibniz algebra (n ≥ 3), as well as the cohomology of n-Leibniz algebra. In recent years, domestic and foreign scholars have conducted a lot of researches on the structure and properties of Leibniz algebras and n-Leibniz algebras. [7] introduced the non-abelian tensor products and universal central extensions of n-Leibniz algebras, which generalized the non-abelian tensor products of Leibniz algebras introduced by Kurdiani and Pirashvili. [8] showed the homology of n-Leibniz algebras with trivial coefficients. [1] studied the properties of Cartan subalgebras and normal elements in n-Leibniz algebras. [5, 6, 10] systematically studied the nilpotency and solvability of n-Leibniz algebra. In particular, [4, 16, 17, 21, 22, 24] extensively studied the extension theory of Leibniz algebras and 3-Lie algebras.

We study 3-Leibniz algebras in this paper, which can be considered as the multivariate generalization of Leibniz algebras as well as the non-antisymmetrized generalization of 3-Lie algebra. 3-Leibnitz algebras also plays an important role in mathematical physics. For example, it can represent the duality theory of M2-branes in multiple backgrounds. In this paper, we study non-abelian extensions of 3-Leibniz algebras. First, we characterize the non-abelian extensions of 3-Leibniz algebras and the isomorphism between extensions by selecting the sections. Then, we construct a differential graded Lie algebra and prove that there is a one-to-one correspondence between the gauge equivalence classes of Maurer-Cartan elements in the differential graded Lie algebra and the isomorphism classes of non-abelian extensions in 3-Leibniz algebras. Meanwhile, we also analyze the Leibniz algebra structure on the space of fundamental elements of 3-Leibniz algebras. It is proved that the non-abelian extensions of 3-Leibniz algebras induce the non-abelian extensions of Leibniz algebras. In addition, since 3-Leibniz algebras are non-antisymmetric, the construction of the 3-Leibniz algebra by using sections is more complicated. The challenge of this paper lies in the discussion of the non-abelian extensions of 3-Leibniz algebra, because it is quite different from the previous work.

The paper is organized as follows. Section 2 reviews the definition of 3-Leibniz algebras and their cohomology theories. Section 3 describes the non-abelian extensions of 3-Leibniz algebras and their isomorphisms. Section 4 constructs a differential graded Lie algebra and proves that there is a one-to-one correspondence between the equivalence classes of Maurer-Cartan elements on the differential graded Lie algebra and the isomorphism classes of non-abelian extensions of 3-Leibniz algebras. Section 5 analyzes the structure of Leibniz algebras on the space of fundamental elements of 3-Leibniz algebras, and it is proved that the non-abelian extension of 3-Leibniz algebras induce the non-abelian extensions of Leibniz algebras.

2 Preliminaries

Let K be an algebraically closed field with characteristic 0. All vector spaces discussed in this section are on the field K. This section reviews the concepts of representations and cohomology of 3-Leibniz algebras.

Definition 2.1 [11] Let L be a vector space. If[,,]L:LLLL is a 3-linear mapping, and for any element x1, x2, y1, y2, y3 in L, it satisfies

[x1,x2,[y1,y2,y3]L]L=[[x1,x2,y1]L,y2,y3]L+[y1,[x1,x2,y2]L,y3]L+[y1,y2,[x1,x2,y3]L]L,

then, (L,[,,]L) will be a 3-Leibniz algebra.

Example 2.1 [11] From Definition 2.1, it can be seen that any 3-Lie algebra and Lie triple system are 3-Leibniz algebras.

Example 2.2 [10] Let (L,[,]) be a Leibniz algebra, and [x1,x2,x3]L=[[x1,x2],x3], where x1, x2, x3L, then (L,[,,]L) will be a 3-Leibniz algebra.

Definition 2.2 [9] Let (L,[,,]L)and (L,[,,]L) be 3-Leibniz algebras. If for any element x1, x2, x3 in L, linear map f:LL satisfies

f[x1,x2,x3]L=[f(x1),f(x2),f(x3)]L,

then f is said to be a 3-Leibniz algebra homomorphism.

Remark 2.1 [12] Let (L,[,,]L)be a 3-Leibniz algebra. Elements in LL are called fundamental elements. For any element X1=x1y1, X2=x2y2 in LL, it is defined that

[X1,X2]F=[x1,y1,x2]Ly2+x2[x1,y1,y2]L.

It is verified that (LL,[,]F)is a Leibniz algebra.

Definition 2.3 [11] Let (L,[,,]L) be a 3-Leibniz algebra, and V be a vector space. If the bilinear maps l:2Lgl(V), m:2Lgl(V) and r:2Lgl(V)) satisfy

[r(x1,x2),l(x3,x4)]=l([x1,x2,x3]L,x4)+l(x3,[x1,x2,x4]L),

[r(x1,x2),m(x3,x4)]=m([x1,x2,x3]L,x4)+m(x3,[x1,x2,x4]L),

[r(x1,x2),r(x3,x4)]=r([x1,x2,x3]L,x4)+r(x3,[x1,x2,x4]L),

l(x1,[x2,x3,x4]L)=l(x3,x4)l(x1,x2)+m(x2,x4)l(x1,x3)+r(x2,x3)l(x1,x4),

m(x1,[x2,x3,x4]L)=l(x3,x4)m(x1,x2)+m(x2,x4)m(x1,x3)+r(x2,x3)m(x1,x4),

and x1, x2, x3, x4 L, then (V; l, m, r) is called a representation of 3-Leibniz algebra.

Example 2.3 Let (L,[,,]L) be a 3-Leibniz algebra, x,y,zL, and define bilinear maps ad1, ad2, ad3 Hom(2L,gl(L)) as

ad1(x,y)(z)=[z,x,y]L,ad2(x,y)(z)=[x,z,y]L,ad3(x,y)(z)=[x,y,z]L.

It is verified that (L;ad1,ad2,ad3) is a representation of L. It is also called adjoint representation.

Theorem 2.1  Let (L,[,,]L) be a 3-Leibniz algebra, V be a vector space, and l:2Lgl(V), m:2Lgl(V) and r:2Lgl(V)are bilinear maps. Then (V; l, m, r) will be a representation of L if and only if (LV,[,,](l,m,r))is a 3-Leibniz algebra, where [,,](l,m,r) is defined as

[x1+v1,x2+v2,x3+v3](l,m,r)=[x1,x2,x3]L+l(x2,x3)(v1)+m(x1,x3)(v2)+r(x1,x2)(v3),x1,x2,x3L,v1,v2,v3V.

Proof According to Definition 2.1, (LV,[,,](l,m,r)) is a 3-Leibniz algebra. If and only if for any xi L, vi V, and i = 1, 2, 3, 4, 5, there is

[x1+v1,x2+v2,[x3+v3,x4+v4,x5+v5](l,m,r)](l,m,r)=[[x1+v1,x2+v2,x3+v3](l,m,r),x4+v4,x5+v5](l,m,r)+[x3+v3,[x1+v1,x2+v2,x4+v4](l,m,r),x5+v5](l,m,r)+[x3+v3,x4+v4,[x1+v1,x2+v2,x5+v5](l,m,r)](l,m,r).

Use the definition of [,,](l,m,r)to expand the above equation. According to the combination of elements and Definition 2.3, Equation (2.1) holds if and only if (V; l, m, r) is a representation of L. □

Next, we recall that the cohomology of 3-Leibniz algebra (L,[,,]L) in the representation (V; l, m, r).

First, a cochain of order p on L is defined as a linear map

α:(2L)pLV,p=0,1,,

and the space of all p-order cochains is denoted by Cp(L,V), namely

Cp(L,V)=Hom((2L)pL,V).

Then define the coboundary operator δp:Cp(L,V)Cp+1(L,V) as

δp(α)(X1,,Xp+1,z)=1i<jp+1(1)iα(X1,,X^i,,Xj1,[Xi,Xj]F,Xj+1,,Xp+1,z)+i=1p+1(1)iα(X1,,X^i,,Xp+1,[Xi,z])+i=1p+1(1)i+1r(xi,yi)(α(X1,,X^i,,Xp+1,z))+(1)pm(xp+1,z)(α(X1,,Xp,yp+1))+(1)pl(yp+1,z)(α(X1,,Xp,xp+1)),

where Xi=xiyi2L, 1 ≤ ip + 1, zL, [Xi,z]=[xi,yi,z]L. From [20], it is known that δ satisfies δpδp1=0.

If δp(α) = 0, p-order cochain α will be a p-order closed chain. Let Zp(L,V) be the set constituting all p-order closed chains. If there exists βCp1(L,V) such that α=δp1(β), p-order cochain α is said to be a p-order coboundary. Let Bp(L,V) be the set formed by all p-order coboundaries. Then Hp(L,V)=Zp(L,V)/Bp(L,V). It is said to be the p-order cohomology group of 3-Leibniz algebras (L,[,,]L)in the representation (V; l, m, r). For cohomology groups of other algebras, refer to [14].

3 Non-abelian extensions of 3-Leibniz algebras

This section gives equivalent characterization conditions for non-abelian extensions and isomorphisms of 3-Leibniz algebras.

Definition 3.1  Let(M,[,,]M), (L,[,,]L) and (K,[,,]K)be 3-Leibniz algebras. If there exists a short exact sequence of vector space

0MiKpL0,

where i and p are both 3-Leibniz algebra homomorphisms. Then K is called a non-abelian extension of L.

If linear map s: LK satisfies ps=idL, s is called a cross section of a non-abelian extension K.

Definition 3.2 Let K1 and K2 be two non-abelian extensions of L. If there exists a 3-Leibniz algebra homomorphism θ: K2K1 such that

0Mi2K2p2L0θ0Mi1K1p1L0

are commutative, the two non-abelian extensions K1 and K2 are said to be isomorphic.

Let K be a non-abelian extension of L and s be a section of K. Then, we will construct the structure of 3-Leibniz algebras on LM.

Define ρ1,ρ2,ρ3:2Lgl(M),ν1,ν2,ν3:LHom(2M,M) and ω:3LM as

ρ1(x,y)(m)=[m,s(x),s(y)]κ,ρ2(x,y)(m)=[s(x),m,s(y)]κ,ρ3(x,y)(m)=[s(x),s(y),m]κ,ν1(x)(m,n)=[s(x),m,n]K,ν2(x)(m,n)=[m,s(x),n]K,

ν3(x)(m,n)=[m,n,s(x)]K,ω(x,y,z)=[s(x),s(y),s(z)]Ks[x,y,z]L,

respectively, and x,y,zL,m,nM.

Define F : KLM is F(X) = p(X) + (Xsp(X)). F is a vector space isomorphism; F1:LMK is F1(x+m)=s(x)+m. Then, with the help of isomorphism F, the 3-linear map[,,](ρ,ν,ω) on LM is defined as

[x1+m1,x2+m2,x3+m3](ρ,ν,ω)=F([F1(x1+m1),F1(x2+m2),F1(x3+m3)]K)=F[s(x1)+m1,s(x2)+m2,s(x3)+m3]K=F[s(x1),s(x2),s(x3)]χ+F[m1,m2,m3]M+F[m1,s(x2),s(x3)]K+F[s(x1),m2,s(x3)]K+F[s(x1),s(x2),m3]K+F[s(x1),m2,m3]K+F[m1,s(x2),m3]K+F[m1,m2,s(x3)]K=[x1,x2,x3]L+[m1,m2,m3]M+ω(x1,x2,x3)+ρ1(x2,x3)(m1)+ρ2(x1,x3)(m2)+ρ3(x1,x2)(m3)+ν1(x1)(m2,m3)+ν2(x2)(m1,m3)+ν3(x3)(m1,m2).

Under the above definitions, the following theorem shows equivalent conditions for (LM,[,,](ρ,ν,ω))being a 3-Leibniz algebra.

Theorem 3.1  (LM,[,,](ρ,ν,ω)) is a 3-Leibniz algebra if and only if for any XiL, mi M, i = 1, 2, 3, 4, 5, linear maps ρ1, ρ2, ρ3, ν1, ν2, ν3, w satisfy

0=ω([x1,x2,x3]L,x4,x5)+ω(x3,[x1,x2,x4]L,x5)+ω(x3,x4,[x1,x2,x5]L)ω(x1,x2,[x3,x4,x5]L)+ρ1(x4,x5)ω(x1,x2,x3)+ρ2(x3,x5)ω(x1,x2,x4)+ρ3(x3,x4)ω(x1,x2,x5)ρ3(x1,x2)ω(x3,x4,x5),

0=ρ1(x4,x5)(ρ1(x2,x3)(m1))+ρ2(x3,x5)(ρ1(x2,x4)(m1))+ρ3(x3,x4)(ρ1(x2,x5)(m1))ρ1(x2,[x3,x4,x5]L)(m1)ν2(x2)(m1,ω(x3,x4,x5)),

0=ρ1(x4,x5)(ρ2(x1,x3)(m2))+ρ2(x3,x5)(ρ2(x1,x4)(m2))+ρ3(x3,x4)(ρ2(x1,x5)(m2))ρ2(x1,[x3,x4,x5]L)(m2)ν1(x1)(m2,ω(x3,x4,x5)),

0=ρ1([x1,x2,x4]L,x5)(m3)+ρ1(x4,[x1,x2,x5]L)(m3)+ρ1(x4,x5)(ρ3(x1,x2)(m3))ρ3(x1,x2)(ρ1(x4,x5)(m3))+ν2(x4)(m3,ω(x1,x2,x5))+ν3(x5)(m3,ω(x1,x2,x4)),

0=ρ2([x1,x2,x3]L,x5)(m4)+ρ2(x3,[x1,x2,x5]L)(m4)+ρ2(x3,x5)(ρ3(x1,x2)(m4))ρ3(x1,x2)(ρ2(x3,x5)(m4))+ν1(x3)(m4,ω(x1,x2,x5))+ν3(x5)(ω(x1,x2,x3),m4),

0=ρ3([x1,x2,x3]L,x4)(m5)+ρ3(x3,[x1,x2,x4]L)(m5)+ρ3(x3,x4)(ρ3(x1,x2)(m5))ρ3(x1,x2)(ρ3(x3,x4)(m5))+ν1(x3)(ω(x1,x2,x4),m5)+ν2(x4)(ω(x1,x2,x3),m5),

0=ρ1(x4,x5)(ν3(x3)(m1,m2))+ρ2(x3,x5)(ν3(x4)(m1,m2))+ρ3(x3,x4)(ν3(x5)(m1,m2))ν3([x3,x4,x5]L)(m1,m2)[m1,m2,ω(x3,x4,x5)]M,

0=ρ1(x4,x5)(ν2(x2)(m1,m3))+ν2(x4)(m3,ρ1(x2,x5)(m1))+ν3(x5)(m3,ρ1(x2,x4)(m1))ν2(x2)(m1,ρ1(x4,x5)(m3)),

0=ρ2(x3,x5)(ν2(x2)(m1,m4))+ν1(x3)(m4,ρ1(x2,x5)(m1))+ν3(x5)(ρ1(x2,x3)(m1),m4)ν2(x2)(m1,ρ2(x3,x5)(m4)),

0=ρ3(x3,x4)(ν2(x2)(m1,m5))+ν1(x3)(ρ1(x2,x4)(m1),m5)+ν2(x4)(ρ1(x2,x3)(m1),m5)ν2(x2)(m1,ρ3(x3,x4)(m5)),

0=ρ1(x4,x5)(ν1(x1)(m2,m3))+ν2(x4)(m3,ρ2(x1,x5)(m2))+ν3(x5)(m3,ρ2(x1,x4)(m2))ν1(x1)(m2,ρ1(x4,x5)(m3)),

0=ρ2(x3,x5)(ν1(x1)(m2,m4))+ν1(x3)(m4,ρ2(x1,x5)(m2))+ν3(x5)(ρ2(x1,x3)(m2),m4)ν1(x1)(m2,ρ2(x3,x5)(m4)),

0=ρ3(x3,x4)(ν1(x1)(m2,m5))+ν1(x3)(ρ2(x1,x4)(m2,m5))+ν2(x4)(ρ2(x1,x3)(m2),m5)ν1(x1)(m2,ρ3(x3,x4)(m5)),

0=ν3(x5)(m3,ρ3(x1,x2)(m4))+ν3(x5)(ρ3(x1,x2)(m3),m4)+ν3([x1,x2,x5]L)(m3,m4)+[m3,m4,ω(x1,x2,x5)]Mρ3(x1,x2)(ν3(x5)(m3,m4)),

0=ν2(x4)(m3,ρ3(x1,x2)(m5))+ν2(x4)(ρ3(x1,x2)(m3),m5)+ν2([x1,x2,x4]L)(m3,m5)+[m3,ω(x1,x2,x4),m5]Mρ3(x1,x2)(ν2(x4)(m3,m5)),

0=ν1(x3)(m4,ρ3(x1,x2)(m5))+ν1(x3)(ρ3(x1,x2)(m4),m5)+ν1([x1,x2,x3]L)(m4,m5)+[ω(x1,x2,x3),m4,m5]Mρ3(x1,x2)(ν1(x3)(m4,m5)),

0=ρ1(x4,x5)([m1,m2,m3]M)+ν2(x4)(m3,ν3(x5)(m1,m2))+ν3(x5)(m3,ν3(x4)(m1,m2))[m1,m2,ρ1(x4,x5)(m3)]M,

0=ρ2(x3,x5)([m1,m2,m4]M)+ν1(x3)(m4,ν3(x5)(m1,m2))+ν3(x5)(ν3(x3)(m1,m2),m4)[m1,m2,ρ2(x3,x5)(m4)]M,

0=ρ3(x3,x4)([m1,m2,m5]M)+ν1(x3)(ν3(x4)(m1,m2),m5)+ν2(x4)(ν3(x3)(m1,m2),m5)[m1,m2,ρ3(x3,x4)(m5)]M,

0=ν3(x5)(m3,ν2(x2)(m1,m4))+ν3(x5)(ν2(x2)(m1,m3),m4)+[m3,m4,ρ1(x2,x5)(m1)]Mν2(x2)(m1,ν3(x5)(m3,m4)),

0=ν2(x4)(m3,ν2(x2)(m1,m5))+ν2(x4)(ν2(x2)(m1,m3),m5)+[m3,ρ1(x2,x4)(m1),m5]Mν2(x2)(m1,ν2(x4)(m3,m5)),

0=ν1(x3)(m4,ν2(x2)(m1,m5))+ν1(x3)(ν2(x2)(m1,m4),m5)+[ρ1(x2,x3)(m1),m4,m5]Mν2(x2)(m1,ν1(x3)(m4,m5)),

0=ν3(x5)(m3,ν1(x1)(m2,m4))+ν3(x5)(ν1(x1)(m2,m3),m4)+[m3,m4,ρ2(x1,x5)(m2)]Mν1(x1)(m2,ν3(x5)(m3,m4)),

0=ν2(x4)(m3,ν1(x1)(m2,m5))+ν2(x4)(ν1(x1)(m2,m3),m5)+[m3,ρ2(x1,x4)(m2),m5]Mν1(x1)(m2,ν2(x4)(m3,m5)),

0=ν1(x3)(m4,ν1(x1)(m2,m5))+ν1(x3)(ν1(x1)(m2,m4),m5)+[ρ2(x1,x3)(m2),m4,m5]Mν1(x1)(m2,ν1(x3)(m4,m5)),

0=[ρ3(x1,x2)(m3),m4,m5]M+[m3,ρ3(x1,x2)(m4),m5]M+[m3,m4,ρ3(x1,x2)(m5)]Mρ3(x1,x2)([m3,m4,m5]M),

0=ν3(x5)([m1,m2,m3]M,m4)+ν3(x5)(m3,[m1,m2,m4]M)+[m3,m4,ν3(x5)(m1,m2)]M[m1,m2,ν3(x5)(m3,m4)]M,

0=ν2(x4)([m1,m2,m3]M,m5)+ν2(x4)(m3,[m1,m2,m5]M)+[m3,ν3(x4)(m1,m2),m5]M[m1,m2,ν2(x4)(m3,m5)]M,

0=ν1(x3)([m1,m2,m4]M,m5)+ν1(x3)(m4,[m1,m2,m5]M)+[ν3(x3)(m1,m2),m4,m5]M[m1,m2,ν1(x3)(m4,m5)]M,

0=[ν2(x2)(m1,m3),m4,m5]M+[m3,ν2(x2)(m1,m4),m5]M+[m3,m4,ν2(x2)(m1,m5)]Mν2(x2)(m1,[m3,m4,m5]M),

0=[ν1(x1)(m2,m3),m4,m5]M+[m3,ν1(x1)(m2,m4),m5]M+[m3,m4,ν1(x1)(m2,m5)]Mν1(x1)(m2,[m3,m4,m5]M).

Proof From the definition of a 3-Leibniz algebra, (LM,[,,](ρ,ν,ω))is a 3-Leibniz algebra if and only if for any xi L, mi M, i = 1, 2, 3, 4, 5, there is

[x1+m1,x2+m2,[x3+m3,x4+m4,x5+m5](ρ,ν,ω)](ρ,ν,ω)=[[x1+m1,x2+m2,x3+m3](ρ,ν,ω),x4+m4,x5+m5](ρ,ν,ω)+[x3+m3,[x1+m,x2+m2,x4+m4](ρ,ν,ω),x5+m5](ρ,ν,ω)+[x3+m3,x4+m4,[x1+m1,x2+m2,x5+m5](ρ,ν,ω)](ρ,ν,ω).

After calculation and based on the combination of elements, Equation (3.32) holds if and only if Equations (3.1)‒(3.31) hold. □

Remark 3.1 From the above theorem, it is known that for the given section s of any non-abelian extension K in 3-Leibniz algebra, (K,[,,]K) can be isomorphic to (LM,[,,](ρ,ν,ω)). Therefore, the form of (LM,[,,](ρ,ν,ω)) will be considered in the following study of the non-abelian extensions in 3-Leibniz algebras.

Proposition 3.1  Let (LM,[,,](ρ,ν,ω))and (LM,[,,](ρ,ν,ω))be two non-abelian extensions of L. Then the two non-abelian extensions are isomorphic if and only if there exists a linear map ξ: LM such that for any x, y, z ∈, m, n M, the following equations hold:

ρ1(x,y)(m)ρ1(x,y)(m)=[m,ξ(x)Дξ(y)]M+ν2(x)(m,ξ(y))+ν3(y)(m,ξ(x)),

ρ2(x,y)(m)ρ2(x,y)(m)=[ξ(x),m,ξ(y)]M+ν1(x)(m,ξ(y))+ν3(y)(ξ(x),m),

ρ3(x,y)(m)ρ3(x,y)(m)=[ξ(x),ξ(y),m]M+ν1(x)(ξ(y),m)+ν2(y)(ξ(x),m),

ν1(x)(m,n)ν1(x)(m,n)=[ξ(x),m,n]M,

ν2(x)(m,n)ν2(x)(m,n)=[m,ξ(x),n]M,

ν3(x)(m,n)ν3(x)(m,n)=[m,n,ξ(x)]M,

ω(x,y,z)ω(x,y,z)=ν1(x)(ξ(y),ξ(z))+ν2(y)(ξ(x),ξ(z))+ν3(z)(ξ(x),ξ(y))+ρ1(y,z)(ξ(x))+ρ2(x,z)(ξ(y))+ρ3(x,y)(ξ(z))+[ξ(x),ξ(y),ξ(z)]Mξ[x,y,z]L.

Proof On one hand, if (LM,[,,](ρ,ν,ω)) and (LM,[,,](ρ,ν,ω)) are isomorphic, namely there exists a 3-Leibniz algebra homomorphismθ:LM(ρ,ν,ω)LM(ρ,ν,ω) such that

0MLM(ρ,ν,ω)pL0θ0MLM(ρ,ν,ω)pL0

are commutative. Among them i is embedding, namely for any m M, i(m) = m, p is projection. For any x + m LM and p(x + m) = x, there exists a linear map ξ: LM such that θ(x + m) = x + (mξ(x)). After calculation, it is obtained that ξ satisfies Equations (3.33)−(3.39). On the other hand, if there exists a linear map ξ: LM such that Equations (3.33)−(3.39) hold, then with the help of linear map ξ, θ: LMLM can be defined as

θ(x+m)=x+(mξ(x)),x+mLM.

After calculation, it is obtained that

θ[x1+m1,x2+m2,x3+m3](ρ,ν,ω)=[x1,x2,x3]L+[m1,m2,m3]M+ω(x1,x2,x3)+ρ1(x2,x3)(m1)+ρ2(x1,x3)(m2)+ρ3(x1,x2)(m3)+ν1(x1)(m2,m3)+ν2(x2)(m1,m3)+ν3(x3)(m1,m2)ξ[x1,x2,x3]L,

[θ(x1+m1),θ(x2+m2),θ(x3+m3)](ρ,ν,ω)=[x1+(m1ξ(x1)),x2+(m2ξ(x2)),x3+(m3ξ(x3))](ρ,ν,ω)=[x1,x2,x3]L+ω(x1,x2,x3)+[m1ξ(x1),m2ξ(x2),m3ξ(x3)]M+ρ1(x2,x3)(m1ξ(x1))+ρ2(x1,x3)(m2ξ(x2))+ρ3(x1,x2)(m3ξ(x3))+ν1(x1)(m2ξ(x2),m3ξ(x3))+ν2(x2)(m1ξ(x1),m3ξ(x3))+ν3(x3)(m1ξ(x1),m2ξ(x2)).

From Equations (3.33)‒(3.39), it follows that

θ[x1+m1,x2+m2,x3+m3](ρ,ν,ω)=[θ(x1+m1),θ(x2+m2),θ(x3+m3)](ρ,ν;ω),

so θ is a 3-Leibniz algebra homomorphism. Θ satisfies the condition that

0MLM(ρ,ν,ω)pL0θ0MLM(ρ,ν,ω)pL0

are commutative. Therefore, non-abelian extension (LM,[,,](ρ,ν,ω)) and (LM,[,,](ρ,ν,ω)) are isomorphic. □

4 Non-abelian extensions of 3-Leibniz algebras and Maurer-Cartan elements

Reference [20] constructed a differential graded Lie algebra such that its Maurer-Cartan element is an n-Leibniz algebra. In this section, we apply this method to the non-abelian extensions of 3-Leibniz algebras and construct a differential graded Lie algebra. It is proved that there is a one-to-one correspondence between the equivalence classes of Maurer-Cartan elements on this differential graded Lie algebras and the non-abelian extension isomorphism classes of 3-Leibniz algebras.

Define C(L,L)=PCp(L,L) and Cp(L,L)=Hom((2L)pL,L). If the permutation σSn satisfies σ(1) << σ(i) and σ(i + 1) << σ(n), then σ is called a (i, ni)-unshuffle. Let the set formed by all (i, ni)-unshuffle be unsh (i, n−i). With definitions mentioned above, [20] shows the following.

Theorem 4.1 [20]  Define on the graded vector space C(L,L)

[α,β]3L=αβ(1)pqβα,

where α Cp(L,L), β Cq(L,L), and p, q ≥ 0. α ◦ β Cp+q(L,L) is defined as

αβ(X1,,Xp+q,x)=k=0p1(1)kq(σunsh(k,q)(1)σ×(α(Xσ(1),,Xσ(k),β(Xσ(k+1),,Xσ(k+q),xk+q+1)yk+q+1,Xk+q+2,,Xp+q,x)+α(Xσ(1),,Xσ(k),xk+q+1β(Xσ(k+1),,Xσ(k+q),yk+q+1),Xk+q+2,,Xp+q,x))+σunsh(p,q)(1)pq(1)σα(Xσ(1),,Xσ(p),β(Xσ(p+1),,Xσ(p+q),x)),

where Xi=xiyi2L, xi, yi L, i=1,2,,p+q. Then (C(L,L),[,]3L) is a graded Lie algebra. In addition, μLHom(3L,L) defines a 3-Leibniz algebra if and only if [μL,μL]3L=0.

Remark 4.1 For any α Cp(L,L), let δ¯α=[μL,α]3L, where μL is a structure in 3-Leibniz algebra on L. Then (C(L,L),[,]3L,δ¯) will be a differential graded Lie algebra. In addition, there is δ¯α=(1)pδα, where δ is the coboundary operator of L on adjoint representation .

Next, we describe the non-abelain extensions of 3-Leibniz algebras by using Maurer-Cartan elements. First, the set of all Maurer-Cartan elements on a differential graded Lie algebra(L,[,],d)is written as

MC(L)={PL1|dP+12[P,P]=0}.

For P, PMC(L), if there exists ξL0 such that

P=eadξPeadξ1adξdξ,

where eadξ=e[ξ,], then P in P is said to be gauge equivalent

Let (L,[,,]L) and (M,[,,]M)be two 3-Leibniz algebras. Define the 3-Leibniz bracket μL+μM on the direct sum LM of L andM, that is

[x1+m1,x2+m2,x3+m3]LM=[x1,x2,x3]L+[m1,m2,m3]M.

Thus, we can obtain a differential graded Lie algebra (C(LM,LM),[,]3L,δ¯), where C(LM,LM)=p0Cp(LM,LM). According to

Ck(LM,M)=C>k(LM,M)Ck(M,M),

define C>k(LM,M)Ck(LM,M), and

C>(LM,M)=k0C>k(LM,M).

This is a graded vector space.

Under the descriptions mentioned above, we obtain the following.

Theorem 4.2  Let L and M be two 3-Leibniz algebras, and δ¯(C>k(LM,M))C>k+1(LM,M).(C>(LM,M),[,]3L,δ¯) is a differential graded Lie sub-algebra of (C(LM,LM),[,]3L,δ¯). Meanwhile, C>0(LM,M)is commutative.

Proof For any αC>p(LM,M), α can be regarded as αCp(LM,M), which satisfies α|(2M)pM=0. Therefore, for any αC>p(LM,M), there is

δ¯(α)|(2M)(p+1)M=[μL+μM,α]3L|(2M)(p+1)M=((μL+μM)α(1)pα(μL+μM))|(2M)(p+1)M=0,

so δ¯(α)C>k+1(LM,M), namely δ¯(C>k(LM,M))C>k+1(LM,M). For any αC>p(LM,M), βC>q(LM,M), as

[α,β]3L|(2M)(p+q)M=(αβ(1)pqβα)|(2M)(p+q)M=0,

[α,β]3LC>p+q(LM,M). Therefore (C>(LM,M),[,]3L,δ¯)is a differential graded Lie sub-algebra.

For any α,βC>0(LM,M)=Hom(L,M), there are α|M=0, β|M=0. Therefore, for any xL[α,β]3L(x)=(αββα)(x)=α(β(x))β(α(x))=0. From the arbitrariness of x, it is known that [α,β]3L=0. From the arbitrariness of α and β, it is known that C>0(LM,M)is commutative. □

Proposition 4.1  Let L and M be two 3-Leibniz algebra. Then (LM,[,,](ρ,ν,ω))be a 3-Leibniz algebra if and only if ρ1 + ρ2 + ρ3 + ν1 + v2 + v3 + w is a Maurer-Cartan element of the differential graded Lie algebra (C>(LM,M),[,]3L,δ¯).

Proof Let ρ1 + ρ2 + ρ3 + ν1 + v2 + v3 + w. From the definition of Maurer-Cartan element, c is a Maurer-Cartan element of a differential graded Lie algebra (C>(LM,M),[,]3L,δ¯) if and only if

δ¯c+12[c,c]3L=0.

As δ¯=[μL+μM,]3L,

[μL+μM,c]3L+12[c,c]3L=0.

Since μL+μM is the 3-Leibniz algebra structure on LM, [μL+μM,μL+μM]3L=0. From the bilinearity and graded antisymmetryof [,]3L, it is known that the equation [μL+μM,c]3L+12[c,c]3L=0 is equivalent to

[μL+μM+c,μL+μM+c]3L=0.

Therefore, by Theorem 4.1 it can be seen that (LM,[,,](ρ,ν,ω)) will be a 3-Leibniz algebra if and only if ρ1 + ρ2 + ρ3 + ν1 + v2 + v3 + w is a Maurer-Cartan element of the differential graded Lie algebra (C>(LM,M),[,]3L,δ¯). □

Theorem 4.3  Let L and M be two 3-Leibniz algebras. The isomorphism classes of non-abelian extensions in 3-Leibniz algebras of L are in one-to-one correspondence with the gauge equivalence classes of Maurer-Cartan elements in differential graded Lie algebras (C>(LM,M),[,]3L,δ¯).

Proof Let c = ρ1 + ρ2 + ρ3 + ν1 + v2 + v3 + w and c=ρ1+ρ2+ρ3+ν1+ν2+ν3+ωC>1(LM,M) be gauge equivalences. There exists ξC>0(LM,M)=Hom(L,M) such that c=eadξceadξ1adξδˉξ, namely for any ei=xi+miLM, i = 1, 2, 3, there is

c(e1e2,e3)=((id+adξ+adξ22!++adξnn!+)c)(e1e2,e3)((id+adξ2!+adξ23!++adξn1n!+)δ¯ξ)(e1e2,e3).

From the definition of [,]3L, it is known that

adξ(c)(e1e2,e3)=[ξ,c]3L(e1e2,e3)=ρ1(x2,x3)(ξ(x1))ρ2(x1,x3)(ξ(x2))ρ3(x1,x2)(ξ(x3))ν1(x1)(m2,ξ(x3))ν1(x1)(ξ(x2),m3)ν2(x2)(m1,ξ(x3))ν2(x2)(ξ(x1),m3)ν3(x3)(m1,ξ(x2))ν3(x3)(ξ(x1),m2),

adξ2(c)(e1e2,e3)=[ξ,[ξ,c]3L]3L(e1e2,e3)=[ξ,c]3L(ξ(x1)e2,e3)[ξ,c]3L(e1ξ(x2),e3)[ξ,c]3L(e1e2,ξ(x3))=2ν1(x1)(ξ(x2),ξ(x3))+2ν2(x2)(ξ(x1),ξ(x3))+2ν3(x3)(ξ(x1),ξ(x2)).

When n ≥ 3 , adξn(c)(e1e2,e3)=0.

δ¯ξ(e1e2,e3)=[μL+μM,ξ]3L(e1e2,e3)=(μL+μM)(ξ(x1)e2,e3)+(μL+μM)(e1ξ(x2),e3)+(μL+μM)(e1e2,ξ(x3))ξ((μL+μM)(e1e2,e3))=[ξ(x1),m2,m3]M+[m1,ξ(x2),m3]M+[m1,m2,ξ(x3)]Mξ[x1,x2,x3]L,

adξ(δ¯ξ)(e1e2,e3)=[ξ,δ¯ξ]3L(e1e2,e3)=δ¯ξ(ξ(x1)e2,e3)δ¯ξ(e1ξ(x2),e3)δ¯ξ(e1e2,ξ(x3))=2[ξ(x1),ξ(x2),m3]M2[ξ(x1),m2,ξ(x3)]M2[m1,ξ(x2),ξ(x1)]M,

adξ2(δ¯ξ)(e1e2,e3)=[ξ,[ξ,δ¯ξ]3L]3L(e1e2,e3)=[ξ,δ¯ξ]3L(ξ(x1)e2,e3)[ξ,δ¯ξ]3L(e1ξ(x2),e3)[ξ,δ¯ξ]3L(e1e2,ξ(x3))=6[ξ(x1),ξ(x2),ξ(x3)]M.

When n ≥ 3, adξn(δ¯ξ)(e1e2,e3)=0.

From the equations mentioned above, it follows that c and c′are gauge equivalence if and only if

c=(c+[ξ,c]3M+12![ξ,[ξ,c]3L]3L)(δ¯ξ+12![ξ,δ¯ξ]3L+13![ξ,[ξ,δ¯ξ]3L]3L),

if and only if Equations (3.33)‒(3.39) hold. With the help of Proposition 3.1, the theorem is proved. □

5 Relations to non-abelian extensions of leibniz algebra

Let (LM,[,,](ρ,ν,ω)) be a non-abelian extension of a 3-Leibniz algebra L. In this section, we will analyze the structure of Leibniz algebra on the space2(LM) formed by all the fundamental elements in the 3-Leibniz algebra(LM,[,,](ρ,ν,ω)), and then prove that the non-abelian extension of a Leibnitz algebra can be given by the non-abelian extension of the 3-Leibnitz algebra. First, we review some results about non-abelian extensions of Leibniz algebras in [17].

Definition 5.1 Let l be a vector space. If the bilinear map[,]t:lll satisfies

[x,[y,z]l]l=[[x,y]l,z]l+[y,[x,z]l]l,x,y,zl,

then (l,[,]l) is called a Leibniz algebra.

Definition 5.2 Let (l,[,]l) be a Leibniz algebra. Define the set formed by all left derivations as DerL (l), and the set formed by all right derivations as DerR(l), namely

DerL(l)={Dgl(l)D[x,y]l=[D(x),y]l+[x,D(y)]l,x,yl},

DerR(l)={Dgl(l)D[x,y]l=[x,D(y)]l[y,D(x)]l,x,yl}.

Example 5.1 Let (l,[,]l)be a Leibniz algebra. For any element x in l, it is defined as adxL,adxRgl(l), and

adxL(y)=[x,y]l,adxR(y)=[y,x]l,yl.

Then adxLDerL(l), adxRDerR(l).

Definition 5.3 Let (s,[,]s), (l,[,]l) and (l^,[,]l^) be Leibniz algebras. If there is a short exact sequence of Leibniz algebra homomorphisms

0sil^pl0,

l^ is said to be a non-abelain extension of l.

If linear map s:ll^ satisfies ps=idl, s is called a section of non-abelian extension l^.

Let l^ be a non-abelian extension of l, and s:ll^ is a section of non-abelian extension l^. Define l:lgl(s), r:lgl(s) and ω:lls as follows:

lx(β)=[s(x),β]l^,xl,βs,

ry(α)=[α,s(y)]l^,yl,αs,

ω(x,y)=[s(x),s(y)]s[x,y],x,yl.

As vector space l^ls, we can transfer the Leibniz algebra structure on l^ tols, namely

[x+α,y+β](l,r,ω)=[x,y]l+ω(x,y)+lx(β)+ry(α)+[α,β]s.

Proposition 5.1  Under the definitions mentioned above, (ls,[,](l,r,ω))is a Leibniz algebra if and only if l, γ, w satisfy

0=lx([α,β]s)[lx(α),β]s[α,lx(β)]s,

0=rx([α,β]s)[α,rx(β)]s+[β,rx(α)]s,

0=[lx(α)+rx(α),β]s,

0=[lx,ly]l[x,y]ladω(x,y)L,

0=[lx,ry]r[x,y]tadω(x,y)R,

0=ry(rx(α)+lx(α)),

0=lx(ω(y,z))ly(ω(x,z))rz(ω(x,y))+ω(x,[y,z]l)ω([x,y]l,z)ω(y,[x,z]l).

[,]F^ refers to the Leibniz bracket on 2(LM), and there is

2(LM)((2M)(LM)(ML))(2L).

Let L:=(2M)(LM)(ML). Then we give a Leibniz algebra structure on L. Define the bilinear map {,}:LLL as

{m1m2+x1m3+m4x2,n1n2+y1n3+n4y2}=[m1,m2,n1]Mn2+n1[m1,m2,n2]M+ν3(y)(m1,m2)n3+y1[m1,m2,n3]M+[m1,m2,n4]My2+n4ν3(y2)(m1,m2)+ν1(x)(m3,n1)n2+n1ν1(x)(m3,n2)+ρ2(x1,y1)(m3)n3+y1ν1(x1)(m3,n3)+ν1(x1)(m3,n4)y2+n4ρ2(x1,y2)(m3)+ν2(x2)(m4,n1)n2+n1ν2(x2)(m4,n2)+ρ1(x2,y1)(m4)n3+y1ν2(x2)(m4,n3)+ν2(x2)(m4,n4)y2+n4ρ1(x2,y2)(m4),

where x1, x2, y1, y2 L, mi, ni M, i = 1, 2, 3, 4.

Proposition 5.2  Under the definitions mentioned above, (L,{,}) is a Leibniz algebra.

Proof After calculation, it is known that

{m1m2+x1m3+m4x2,n1n2+y1n3+n4y2}=[m1m2+x1m3+m4x2,n1n2+y1n3+n4y2]F^.

Therefore, (L,{,}) a sub-algebra of the Leibniz algebra(2(LM),[,]F^). □

Then define l~:2Lgl(L), r~:2Lgl(L)] and ω~:(2L)(2L)L as

l~(x1x2)(m1m2+x3m3+m4x4)=ρ3(x1,x2)(m1)m2+m1ρ3(x1,x2)(m2)+x3ρ3(x1,x2)(m3)+[x1,x2,x3]Lm3+ω(x1,x2,x3)m3+ρ3(x1,x2)(m4)x4+m4[x1,x2,x4]L+m4ω(x1,x2,x4),

r~(x1x2)(m1m2+x3m3+m4x4)=ν3(x1)(m1,m2)x2+x1ν3(x2)(m1,m2)+ρ2(x3,x1)(m3)x2+x1ρ2(x3,x2)(m3)+ρ1(x4,x1)(m4)x2+x1ρ1(x4,x2)(m4),

ω~(x1x2,x3x4)=ω(x1,x2,x3)x4+x3ω(x1,x2,x4),

where x1, x2, x3, x4 L, m1, m2, m3, m4 M. After calculation, it follows that l~, r~, w~ satisfy Equations (5.1)‒(5.7). According to Proposition 5.1, ((2L)L,[,](l~,r~,ω~))is a Leibniz algebra.

Theorem 5.1  Let (L,[,,]L) and (M,[,,]M) be two 3-Leibniz algebras and (LM,[,,](ρ,ν,ω)) is a non-abelian extension of L. Then (2(LM),[,]F^) is a non-abelian extension of the Leibniz algebra (2L,[,]F).

Proof As 2(LM)((2M)(LM)(ML))(2L), the Leibniz algebra structure on2(LM) is

[m1m2+x1m3+m4x2+x3x4,n1n2+y1n3+n4y2+y3y4]F^=[m1m2+x1m3+m4x2,n1n2+y1n3+n4y2]F^+[x3x4,n1n2+y1n3+n4y2]F^+[m1m2+x1m3+m4x2,y3y4]F^+[x3x4,y3y4]F^={m1m2+x1m3+m4x2,n1n2+y1n3+n4y2}+r~(x3x4)(n1n2+y1n3+n4y2)+l~(y3y4)(m1m2+x1m3+m4x2)+ω~(x3x4,y3y4)+[x3x4,y3y4]F.

Therefore, (2(LM),[,]F^))is a non-abelian extension of Leibniz algebra (2L,[,]F). □

References

[1]

Albeverio S, Ayupov Sh A, Omirov B A, Turdibaev R M. Cartan subalgebras of Leibniz n-algebras. Comm. Algebra 2009; 37(6): 2080–2096

[2]

Bagger J, Lambert N. Comments on multiple M2-branes. J High Energy Phys 2008; 2008(2): 105

[3]

Bagger J, Lambert N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys Rev D 2008; 77(6): 065008

[4]

Bai R P, Wu W Q, Li Y, Li Z H. Module extensions of 3-Lie algebras. Linear Multilinear Algebra 2012; 60(4): 433–447

[5]

Bai R P, Zhang J. The classification of nilpotent Leibniz 3-algebras. Acta Math Sci Ser B (Engl Ed) 2011; 31(5): 1997–2006

[6]

Camacho L M, Casas J M, Gómez J R, Ladra M, Omirov B A. On nilpotent Leibniz n-algebras. J Algebra Appl 2012; 11(3): 1250062

[7]

Casas J M. A non-abelian tensor product and universal central extension of Leibniz n-algebra. Bull Belg Math Soc Simon Stevin 2004; 11(2): 259–270

[8]

Casas J M. Homology with trivial coefficients of Leibniz n-algebras. Comm Algebra 2003; 31(3): 1377–1386

[9]

Casas J M, Khmaladze E, Ladra M. Crossed modules for Leibniz n-algebras. Forum Math 2008; 20(5): 841–858

[10]

Casas J M, Khmaladze E, Ladra M. On solvability and nilpotency of Leibniz n-algebras. Comm Algebra 2006; 34(8): 2769–2780

[11]

Casas J M, Loday J-L, Pirashvili T. Leibniz n-algebras. Forum Math 2002; 14(2): 189–207

[12]

Daletskii Y L, Takhtajan L A. Leibniz and Lie algebra structures for Nambu algebra. Lett Math Phys 1997; 39(2): 127–141

[13]

Filippov V T. n-Lie algebras. Sibirsk Mat Zh 1985; 26(6): 126–140,191

[14]

Guan A, Lazarev A, Sheng Y H, Tang R. Review of deformation theory I: concrete formulas for deformations of algebraic structures. Adv Math (China) 2020; 49(3): 257–277

[15]

Guan B L, Chen LY. Properties of restricted Leibniz algebras. Adv Math (China) 2014; 43(5): 676–682

[16]

Liu J F, Makhlouf A Sheng Y H. A new approach to representations of 3-Lie algebras and Abelian extensions. Algebr Represent Theory 2017; 20(6): 1415–1431

[17]

Liu J F, Sheng Y H, Wang Q. On non-abelian extensions of Leibniz algebras. Comm Algebra 2018; 46(2): 574–587

[18]

Loday J-L, Pirashvili T. Universal enveloping algebras of Leibniz algebras and (∞)homology. Math Ann 1993; 296(1): 139–158

[19]

Nambu Y. Generalized Hamiltonian dynamics. Phys Rev D (3) 1973; 7(8): 2405–2412

[20]

Rotkiewicz M. Cohomology ring of n-Lie algebras. Extracta Math 2005; 20(3): 219–232

[21]

Sheng Y H, Tang R. Symplectic, product and complex structures on 3-Lie algebras. J Algebra 2018; 508: 256–300

[22]

Song L N, Makhlouf A, Tang R. On non-abelian extensions of 3-Lie algebras. Commun Theor Phys (Beijing) 2018; 69(4): 347–356

[23]

Takhtajan L. On foundation of the generalized Nambu mechanics. Comm Math Phys 1994; 160(2): 295–315

[24]

Xu S R. Cohomology, derivations and abelian extensions of 3-Lie algebras. J Algebra Appl 2019; 18(7): 1950130

RIGHTS & PERMISSIONS

Higher Education Press 2024

AI Summary AI Mindmap
PDF (573KB)

611

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/